Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, TextIteratorStreamer | |
import torch | |
from threading import Thread | |
import os | |
def load_model(model_name): | |
return pipeline("text-generation", model=model_name, device_map="cuda", torch_dtype=torch.bfloat16, trust_remote_code=True, token=os.environ["token"], use_fast=True) | |
def generate( | |
message, | |
history, | |
model_name, | |
system, | |
temperature=0.4, | |
top_p=0.95, | |
min_p=0.1, | |
top_k=50, | |
max_new_tokens=256, | |
): | |
try: | |
pipe = load_model(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=os.environ["token"]) | |
tokenizer.eos_token = "<|im_end|>" | |
print(tokenizer) | |
pipe.tokenizer = tokenizer | |
prompt = f"<|im_start|>system\n{system}<|im_end|>\n" | |
for (user_turn, assistant_turn) in history: | |
prompt += f"<|im_start|>user\n{user_turn}<|im_end|>\n<|im_start|>assistant\n{assistant_turn}<|im_end|>\n" | |
prompt += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" | |
streamer = TextIteratorStreamer(pipe.tokenizer, timeout=240.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict( | |
text_inputs=prompt, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
min_p=min_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=1.1 | |
) | |
t = Thread(target=pipe.__call__, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
for chunk in streamer: | |
outputs.append(chunk) | |
yield "".join(outputs) | |
except StopAsyncIteration: | |
print("Stream stopped unexpectedly.") | |
yield "".join(outputs) | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
yield "An error occurred during generation." | |
model_choices = ["Locutusque/Apollo-2.0-Llama-3.1-8B", "Locutusque/TinyMistral-248M-v3", "Locutusque/Hercules-6.1-Llama-3.1-8B", "Locutusque/CollectiveLM-Llama-3.1-8B", "M4-ai/TinyMistral-248M-V3-Instruct", "Locutusque/StockQwen-2.5-7B"] | |
# What at the best options? | |
g = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.components.Dropdown(choices=model_choices, label="Model", value=model_choices[0], interactive=True), | |
gr.components.Textbox(lines=2, label="System Prompt", value="You are a sentient, super intelligent AI developed by a man named Locutusque."), | |
gr.components.Slider(minimum=0, maximum=2, value=0.8, label="Temperature"), | |
gr.components.Slider(minimum=0, maximum=1, value=0.95, label="Top p"), | |
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Min P"), | |
gr.components.Slider(minimum=0, maximum=100, step=1, value=15, label="Top k"), | |
gr.components.Slider(minimum=1, maximum=8192, step=1, value=1024, label="Max tokens"), | |
], | |
title="Locutusque's Language Models", | |
description="Try out Locutusque's language models here! Credit goes to Mediocreatmybest for this space. You may also find some experimental preview models that have not been made public here.", | |
) | |
if __name__ == "__main__": | |
g.launch() | |