Mgolo's picture
Update app.py
bd386d7 verified
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import re
import whisper
import tempfile
import os
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
import os
# Additions for file processing
import fitz # PyMuPDF for PDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
# --- Device selection ---
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
HF_TOKEN = os.getenv("HF_TOKEN")
# --- Load translation models ---
def load_models():
en_dar_model_path = "LocaleNLP/english_hausa"
en_wol_model_path = "LocaleNLP/eng_wolof"
en_hau_model_path = "LocaleNLP/english_darija"
en_dar_model = AutoModelForSeq2SeqLM.from_pretrained(en_dar_model_path, token=HF_TOKEN).to(device)
en_dar_tokenizer = MarianTokenizer.from_pretrained(en_dar_model_path, token=HF_TOKEN)
en_wol_model = AutoModelForSeq2SeqLM.from_pretrained(en_wol_model_path, token=HF_TOKEN).to(device)
en_wol_tokenizer = MarianTokenizer.from_pretrained(en_wol_model_path, token=HF_TOKEN)
en_hau_model = AutoModelForSeq2SeqLM.from_pretrained(en_hau_model_path, token=HF_TOKEN).to(device)
en_hau_tokenizer = MarianTokenizer.from_pretrained(en_hau_model_path, token=HF_TOKEN)
en_dar_translator = pipeline("translation", model=en_dar_model, tokenizer=en_dar_tokenizer, device=0 if device.type == 'cuda' else -1)
en_wol_translator = pipeline("translation", model=en_wol_model, tokenizer=en_wol_tokenizer, device=0 if device.type == 'cuda' else -1)
en_hau_translator = pipeline("translation", model=en_hau_model, tokenizer=en_hau_tokenizer, device=0 if device.type == 'cuda' else -1)
return en_dar_translator, en_hau_translator, en_wol_translator
def load_whisper_model():
return whisper.load_model("base")
def transcribe_audio(audio_file):
model = load_whisper_model()
if isinstance(audio_file, str):
audio_path = audio_file
else:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_file.read())
audio_path = tmp.name
result = model.transcribe(audio_path)
if not isinstance(audio_file, str):
os.remove(audio_path)
return result["text"]
def translate(text, target_lang):
en_dar_translator, en_hau_translator, en_wol_translator = load_models()
if target_lang == "Darija (Morocco)":
translator = en_dar_translator
elif target_lang == "Hausa (Nigeria)":
translator = en_hau_translator
elif target_lang == "Wolof (Senegal)":
translator = en_wol_translator
else:
raise ValueError("Unsupported target language")
lang_tag = {
"Darija (Morocco)": ">>dar<<",
"Hausa (Nigeria)": ">>hau<<",
"Wolof (Senegal)": ">>wol<<"
}
paragraphs = text.split("\n")
translated_output = []
with torch.no_grad():
for para in paragraphs:
if not para.strip():
translated_output.append("")
continue
sentences = [s.strip() for s in para.split('. ') if s.strip()]
formatted = [f"{lang_tag} {s}" for s in sentences]
results = translator(formatted,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2)
translated_sentences = [r['translation_text'].capitalize() for r in results]
translated_output.append('. '.join(translated_sentences))
return "\n".join(translated_output)
# --- Extract text from file ---
def extract_text_from_file(uploaded_file):
# Handle both filepath (str) and file-like object
if isinstance(uploaded_file, str):
file_path = uploaded_file
file_type = file_path.split('.')[-1].lower()
with open(file_path, "rb") as f:
content = f.read()
else:
file_type = uploaded_file.name.split('.')[-1].lower()
content = uploaded_file.read()
if file_type == "pdf":
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
elif file_type == "docx":
if isinstance(uploaded_file, str):
doc = docx.Document(file_path)
else:
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
else:
encoding = chardet.detect(content)['encoding']
if encoding:
content = content.decode(encoding, errors='ignore')
if file_type in ("html", "htm"):
soup = BeautifulSoup(content, "html.parser")
return soup.get_text()
elif file_type == "md":
html = markdown2.markdown(content)
soup = BeautifulSoup(html, "html.parser")
return soup.get_text()
elif file_type == "srt":
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
elif file_type in ("txt", "text"):
return content
else:
raise ValueError("Unsupported file type")
# --- Main Function ---
def process(target_lang, text_input, audio_input, file_input):
input_text = ""
if text_input and text_input.strip():
input_text = text_input
elif audio_input:
input_text = transcribe_audio(audio_input)
elif file_input:
input_text = extract_text_from_file(file_input)
if not input_text.strip():
return "", "No valid input provided."
translated_text = translate(input_text, target_lang)
return input_text, translated_text
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("## 🌐 LocaleNLP Translator β€” English ↔ Darija / Hausa / Wolof")
target_lang = gr.Dropdown(
["Darija (Morocco)", "Hausa (Nigeria)", "Wolof (Senegal)"],
label="Select target language"
)
with gr.Row():
text_input = gr.Textbox(label="✏️ Enter English text", lines=10)
audio_input = gr.Audio(type="filepath", label="πŸ”Š Upload Audio")
file_input = gr.File(label="πŸ“„ Upload Document")
with gr.Row():
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10)
translated_output = gr.Textbox(label="Translated Text", lines=10)
run_btn = gr.Button("Translate")
run_btn.click(process, inputs=[target_lang, text_input, audio_input, file_input], outputs=[extracted_text, translated_output])
if __name__ == "__main__":
demo.launch()