Real-ESRGAN / tests /test_utils.py
AK391
updates
810c8ea
raw
history blame
3.09 kB
import numpy as np
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan.utils import RealESRGANer
def test_realesrganer():
# initialize with default model
restorer = RealESRGANer(
scale=4,
model_path='experiments/pretrained_models/RealESRGAN_x4plus.pth',
model=None,
tile=10,
tile_pad=10,
pre_pad=2,
half=False)
assert isinstance(restorer.model, RRDBNet)
assert restorer.half is False
# initialize with user-defined model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
restorer = RealESRGANer(
scale=4,
model_path='experiments/pretrained_models/RealESRGAN_x4plus_anime_6B.pth',
model=model,
tile=10,
tile_pad=10,
pre_pad=2,
half=True)
# test attribute
assert isinstance(restorer.model, RRDBNet)
assert restorer.half is True
# ------------------ test pre_process ---------------- #
img = np.random.random((12, 12, 3)).astype(np.float32)
restorer.pre_process(img)
assert restorer.img.shape == (1, 3, 14, 14)
# with modcrop
restorer.scale = 1
restorer.pre_process(img)
assert restorer.img.shape == (1, 3, 16, 16)
# ------------------ test process ---------------- #
restorer.process()
assert restorer.output.shape == (1, 3, 64, 64)
# ------------------ test post_process ---------------- #
restorer.mod_scale = 4
output = restorer.post_process()
assert output.shape == (1, 3, 60, 60)
# ------------------ test tile_process ---------------- #
restorer.scale = 4
img = np.random.random((12, 12, 3)).astype(np.float32)
restorer.pre_process(img)
restorer.tile_process()
assert restorer.output.shape == (1, 3, 64, 64)
# ------------------ test enhance ---------------- #
img = np.random.random((12, 12, 3)).astype(np.float32)
result = restorer.enhance(img, outscale=2)
assert result[0].shape == (24, 24, 3)
assert result[1] == 'RGB'
# ------------------ test enhance with 16-bit image---------------- #
img = np.random.random((4, 4, 3)).astype(np.uint16) + 512
result = restorer.enhance(img, outscale=2)
assert result[0].shape == (8, 8, 3)
assert result[1] == 'RGB'
# ------------------ test enhance with gray image---------------- #
img = np.random.random((4, 4)).astype(np.float32)
result = restorer.enhance(img, outscale=2)
assert result[0].shape == (8, 8)
assert result[1] == 'L'
# ------------------ test enhance with RGBA---------------- #
img = np.random.random((4, 4, 4)).astype(np.float32)
result = restorer.enhance(img, outscale=2)
assert result[0].shape == (8, 8, 4)
assert result[1] == 'RGBA'
# ------------------ test enhance with RGBA, alpha_upsampler---------------- #
restorer.tile_size = 0
img = np.random.random((4, 4, 4)).astype(np.float32)
result = restorer.enhance(img, outscale=2, alpha_upsampler=None)
assert result[0].shape == (8, 8, 4)
assert result[1] == 'RGBA'