Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,521 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
|
|
| 1 |
+
#"👑Ultron-Praim👑"
|
| 2 |
+
import os
|
| 3 |
+
import asyncio
|
| 4 |
+
import logging
|
| 5 |
+
from transformers import AutoTokenizer, TFAutoModel, pipeline
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from rl.agents import PPOAgent, DQNAgent, SACAgent, MetaRLAgent
|
| 8 |
+
from rl.memory import SequentialMemory
|
| 9 |
+
import tensorflow as tf
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import shutil
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import seaborn as sns
|
| 16 |
+
from pandas_profiling import ProfileReport
|
| 17 |
+
from sklearn.model_selection import train_test_split
|
| 18 |
+
from sklearn.metrics import classification_report
|
| 19 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
| 20 |
+
from tensorflow.keras.models import Sequential, load_model
|
| 21 |
+
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
|
| 22 |
+
from ultralytics import YOLO
|
| 23 |
+
from mlagents_envs.environment import UnityEnvironment
|
| 24 |
+
from scipy import stats
|
| 25 |
+
import feature_engine.creation as fe
|
| 26 |
+
from PIL import Image
|
| 27 |
+
import cv2
|
| 28 |
+
import faiss
|
| 29 |
+
from cryptography.fernet import Fernet
|
| 30 |
+
import pyttsx3 # Text-to-Speech library
|
| 31 |
+
import whisper # Whisper library for STT
|
| 32 |
+
import requests
|
| 33 |
+
from bs4 import BeautifulSoup # Web Scraping
|
| 34 |
+
import networkx as nx # Knowledge Graph Management
|
| 35 |
+
import multiprocessing # Multiprocessing for real-time task handling
|
| 36 |
+
import qiskit # Quantum Computing Library
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
# Logging Configuration
|
| 39 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 40 |
|
| 41 |
+
# Configuration
|
| 42 |
+
CONFIG = {
|
| 43 |
+
"learning_rate": 1e-4,
|
| 44 |
+
"memory_limit": 10000,
|
| 45 |
+
"nb_actions": 5,
|
| 46 |
+
"tokenizer_model": "bert-base-uncased",
|
| 47 |
+
"sentence_embedder": "all-MiniLM-L6-v2",
|
| 48 |
+
"multimodal_model": "openai/clip-vit-base-patch32",
|
| 49 |
+
"index_path": "knowledge_index.faiss",
|
| 50 |
+
"whisper_model": "openai/whisper-base",
|
| 51 |
+
"t5_model": "t5-base", # Few-Shot/Zero-Shot Learning
|
| 52 |
+
"automl_model": "h2o.ai/automl", # AutoML Placeholder
|
| 53 |
+
"emotion_model": "microsoft/FacialEmotionRecognition", # Emotion Detection Model
|
| 54 |
+
"yolo_model": "yolov3.cfg", # YOLO Configuration
|
| 55 |
+
"yolo_weights": "yolov3.weights", # YOLO Weights
|
| 56 |
+
"yolo_classes": "coco.names", # YOLO Classes
|
| 57 |
+
"dalle_model": "dalle-mini/dalle-mini-1", # Text-to-Image Model
|
| 58 |
+
"musenet_model": "muse-net/musenet-24000", # Music Generation Model
|
| 59 |
+
"quantum_backend": "qiskit.basicAer", # Quantum Computing Backend
|
| 60 |
+
"tts_model": "facebook/tts-en-transformer" # Advanced Text-to-Speech
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
# Initialize Models
|
| 64 |
+
tokenizer = AutoTokenizer.from_pretrained(CONFIG["tokenizer_model"])
|
| 65 |
+
nlp_model = TFAutoModel.from_pretrained(CONFIG["tokenizer_model"])
|
| 66 |
+
embedder = SentenceTransformer(CONFIG["sentence_embedder"])
|
| 67 |
+
|
| 68 |
+
# Initialize Whisper for Speech-to-Text
|
| 69 |
+
whisper_model = whisper.load_model(CONFIG["whisper_model"])
|
| 70 |
+
|
| 71 |
+
# Initialize T5 for Few-Shot/Zero-Shot Learning
|
| 72 |
+
t5_model = pipeline("text-generation", model=CONFIG["t5_model"])
|
| 73 |
+
|
| 74 |
+
# Initialize Advanced TTS and VALL-E
|
| 75 |
+
tts_model = pipeline("text-to-speech", model=CONFIG["tts_model"])
|
| 76 |
+
|
| 77 |
+
# Memory Classes
|
| 78 |
+
class ContextualMemory:
|
| 79 |
+
def __init__(self):
|
| 80 |
+
self.short_term_memory = []
|
| 81 |
+
self.long_term_memory = []
|
| 82 |
+
|
| 83 |
+
def add_to_memory(self, query, response, memory_type="short"):
|
| 84 |
+
memory = {"query": query, "response": response}
|
| 85 |
+
if memory_type == "short":
|
| 86 |
+
self.short_term_memory.append(memory)
|
| 87 |
+
if len(self.short_term_memory) > CONFIG["memory_limit"]:
|
| 88 |
+
self.short_term_memory.pop(0)
|
| 89 |
+
elif memory_type == "long":
|
| 90 |
+
self.long_term_memory.append(memory)
|
| 91 |
+
|
| 92 |
+
def retrieve_memory(self, memory_type="short"):
|
| 93 |
+
return self.short_term_memory if memory_type == "short" else self.long_term_memory
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# Security Module
|
| 98 |
+
class SecurityHandler:
|
| 99 |
+
def __init__(self):
|
| 100 |
+
self.key = Fernet.generate_key()
|
| 101 |
+
self.cipher = Fernet(self.key)
|
| 102 |
+
|
| 103 |
+
def encrypt(self, data):
|
| 104 |
+
return self.cipher.encrypt(data.encode())
|
| 105 |
+
|
| 106 |
+
def decrypt(self, data):
|
| 107 |
+
return self.cipher.decrypt(data).decode()
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# Reinforcement Learning Agents
|
| 111 |
+
class RLAgent:
|
| 112 |
+
def __init__(self, model_type="PPO"):
|
| 113 |
+
self.model_type = model_type
|
| 114 |
+
self.agent = self._initialize_agent()
|
| 115 |
+
|
| 116 |
+
def _initialize_agent(self):
|
| 117 |
+
if self.model_type == "PPO":
|
| 118 |
+
return PPOAgent()
|
| 119 |
+
elif self.model_type == "DQN":
|
| 120 |
+
return DQNAgent()
|
| 121 |
+
elif self.model_type == "SAC":
|
| 122 |
+
return SACAgent()
|
| 123 |
+
elif self.model_type == "MetaRL":
|
| 124 |
+
return MetaRLAgent()
|
| 125 |
+
else:
|
| 126 |
+
raise ValueError("Unsupported RL model type")
|
| 127 |
+
|
| 128 |
+
def act(self, state):
|
| 129 |
+
# Placeholder: Reinforcement learning decision-making
|
| 130 |
+
return f"Decision based on {self.model_type}: {state}"
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# Core AI System
|
| 134 |
+
class Ultron:
|
| 135 |
+
def __init__(self):
|
| 136 |
+
self.context_memory = ContextualMemory()
|
| 137 |
+
self.multimodal_processor = MultimodalProcessor()
|
| 138 |
+
self.task_manager = TaskManager()
|
| 139 |
+
self.security = SecurityHandler()
|
| 140 |
+
self.rl_agents = {
|
| 141 |
+
"GandMaster": RLAgent(model_type="PPO"),
|
| 142 |
+
"MasterMind": RLAgent(model_type="PPO"),
|
| 143 |
+
"BrainA1": RLAgent(model_type="PPO"),
|
| 144 |
+
"BrainA2": RLAgent(model_type="DQN"),
|
| 145 |
+
"BrainA3": RLAgent(model_type="SAC"),
|
| 146 |
+
"BrainA4": RLAgent(model_type="HRL"),
|
| 147 |
+
"BrainA5": RLAgent(model_type="MetaRL"),
|
| 148 |
+
}
|
| 149 |
+
self.speaker = pyttsx3.init() # Initialize text-to-speech engine
|
| 150 |
+
self.quantum_processor = QuantumProcessor() # Initialize Quantum Processor
|
| 151 |
+
self.tts_model = tts_model # Advanced Text-to-Speech Model
|
| 152 |
+
|
| 153 |
+
def speak(self, text):
|
| 154 |
+
"""Converts text to speech."""
|
| 155 |
+
try:
|
| 156 |
+
self.speaker.say(text)
|
| 157 |
+
self.speaker.runAndWait()
|
| 158 |
+
except Exception as e:
|
| 159 |
+
logging.error(f"Text-to-Speech error: {e}")
|
| 160 |
+
|
| 161 |
+
async def process_query(self, query, input_type="text", file_path=None):
|
| 162 |
+
try:
|
| 163 |
+
if input_type == "text":
|
| 164 |
+
vectorized_query = tokenizer(query, return_tensors="tf", padding=True, truncation=True)
|
| 165 |
+
response = f"Processed text query: {query}"
|
| 166 |
+
|
| 167 |
+
elif input_type == "image":
|
| 168 |
+
response = self.multimodal_processor.process_image(file_path)
|
| 169 |
+
|
| 170 |
+
elif input_type == "video":
|
| 171 |
+
response = self.multimodal_processor.process_video(file_path)
|
| 172 |
+
|
| 173 |
+
elif input_type == "camera":
|
| 174 |
+
image_path = self.multimodal_processor.capture_image_from_camera()
|
| 175 |
+
response = self.multimodal_processor.process_image(image_path)
|
| 176 |
+
|
| 177 |
+
elif input_type == "speech":
|
| 178 |
+
result = whisper_model.transcribe(file_path)
|
| 179 |
+
response = result["text"]
|
| 180 |
+
|
| 181 |
+
elif input_type == "web":
|
| 182 |
+
response = self._web_scrape(query)
|
| 183 |
+
|
| 184 |
+
elif input_type == "emotion":
|
| 185 |
+
response = self._detect_emotion(file_path)
|
| 186 |
+
|
| 187 |
+
elif input_type == "yolo":
|
| 188 |
+
response = self.multimodal_processor.detect_objects(file_path)
|
| 189 |
+
|
| 190 |
+
elif input_type == "dalle":
|
| 191 |
+
response = self.generate_image(query)
|
| 192 |
+
|
| 193 |
+
elif input_type == "musenet":
|
| 194 |
+
response = self.generate_music(query)
|
| 195 |
+
|
| 196 |
+
elif input_type == "quantum":
|
| 197 |
+
circuit = qiskit.QuantumCircuit(2)
|
| 198 |
+
circuit.h(0)
|
| 199 |
+
circuit.cx(0, 1)
|
| 200 |
+
response = self.quantum_processor.run_quantum_circuit(circuit)
|
| 201 |
+
|
| 202 |
+
elif input_type == "tts":
|
| 203 |
+
response = self.tts_model(query)
|
| 204 |
+
|
| 205 |
+
else:
|
| 206 |
+
response = "Unsupported input type."
|
| 207 |
+
|
| 208 |
+
# Few-Shot/Zero-Shot Learning with T5
|
| 209 |
+
if input_type == "text":
|
| 210 |
+
if query.lower() not in [memory["query"].lower() for memory in self.context_memory.short_term_memory]:
|
| 211 |
+
t5_response = t5_model(f"Translate this to a query: {query}")[0]["generated_text"]
|
| 212 |
+
response += f" (Generated response: {t5_response})"
|
| 213 |
+
|
| 214 |
+
# Reinforcement Learning with Human Feedback
|
| 215 |
+
if input_type == "text":
|
| 216 |
+
feedback = input(f"Was the response helpful? (yes/no): ")
|
| 217 |
+
if feedback.lower() == "yes":
|
| 218 |
+
decision = self.rl_agents["GandMaster"].act(response)
|
| 219 |
+
self.context_memory.add_to_memory(query, response)
|
| 220 |
+
self.speak(response) # Speak function invoked for each response
|
| 221 |
+
return f"{response} | RL Decision: {decision}"
|
| 222 |
+
elif feedback.lower() == "no":
|
| 223 |
+
decision = self.rl_agents["GandMaster"].act("Incorrect response, seeking improvements.")
|
| 224 |
+
self.context_memory.add_to_memory(query, "Incorrect response", memory_type="short")
|
| 225 |
+
return "Sorry, let's try again with a better response."
|
| 226 |
+
return response
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
logging.error(f"Query processing error: {e}")
|
| 230 |
+
return "An error occurred while processing the query."
|
| 231 |
+
|
| 232 |
+
def _web_scrape(self, query):
|
| 233 |
+
try:
|
| 234 |
+
url = f"https://www.google.com/search?q={query.replace(' ', '+')}"
|
| 235 |
+
headers = {'User-Agent': 'Mozilla/5.0'}
|
| 236 |
+
page = requests.get(url, headers=headers)
|
| 237 |
+
soup = BeautifulSoup(page.content, 'html.parser')
|
| 238 |
+
result = soup.find('div', {'id': 'main'}).text.strip()
|
| 239 |
+
return result[:500] # Limit results to avoid long responses
|
| 240 |
+
except Exception as e:
|
| 241 |
+
logging.error(f"Web scraping error: {e}")
|
| 242 |
+
return "Web scraping failed."
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
# Task Management with Multiprocessing
|
| 246 |
+
class TaskManager:
|
| 247 |
+
def __init__(self):
|
| 248 |
+
self.tasks = []
|
| 249 |
+
|
| 250 |
+
def add_task(self, task_name, priority=1):
|
| 251 |
+
self.tasks.append({"task": task_name, "priority": priority})
|
| 252 |
+
self.tasks = sorted(self.tasks, key=lambda x: x["priority"], reverse=True)
|
| 253 |
+
|
| 254 |
+
def get_next_task(self):
|
| 255 |
+
return self.tasks.pop(0) if self.tasks else None
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
# Multimodal Processing
|
| 259 |
+
class MultimodalProcessor:
|
| 260 |
+
def __init__(self):
|
| 261 |
+
self.clip_model = pipeline("feature-extraction", model=CONFIG["multimodal_model"])
|
| 262 |
+
self.net = cv2.dnn.readNetFromDarknet(CONFIG["yolo_model"], CONFIG["yolo_weights"])
|
| 263 |
+
self.net.setInput(cv2.dnn.blobFromImage)
|
| 264 |
+
|
| 265 |
+
def process_image(self, image_path):
|
| 266 |
+
try:
|
| 267 |
+
image = Image.open(image_path)
|
| 268 |
+
features = self.clip_model(image)
|
| 269 |
+
return features
|
| 270 |
+
except Exception as e:
|
| 271 |
+
logging.error(f"Image processing error: {e}")
|
| 272 |
+
return None
|
| 273 |
+
|
| 274 |
+
def process_video(self, video_path):
|
| 275 |
+
try:
|
| 276 |
+
video_frames = self._extract_video_frames(video_path)
|
| 277 |
+
features = [self.clip_model(frame) for frame in video_frames]
|
| 278 |
+
return features
|
| 279 |
+
except Exception as e:
|
| 280 |
+
logging.error(f"Video processing error: {e}")
|
| 281 |
+
return None
|
| 282 |
+
|
| 283 |
+
def _extract_video_frames(self, video_path, frame_rate=8):
|
| 284 |
+
cap = cv2.VideoCapture(video_path)
|
| 285 |
+
frames = []
|
| 286 |
+
while cap.isOpened():
|
| 287 |
+
ret, frame = cap.read()
|
| 288 |
+
if not ret:
|
| 289 |
+
break
|
| 290 |
+
frames.append(frame)
|
| 291 |
+
cap.release()
|
| 292 |
+
return frames[::frame_rate]
|
| 293 |
+
|
| 294 |
+
def capture_image_from_camera(self):
|
| 295 |
+
cap = cv2.VideoCapture(0)
|
| 296 |
+
ret, frame = cap.read()
|
| 297 |
+
image_path = "camera_capture.jpg"
|
| 298 |
+
cv2.imwrite(image_path, frame)
|
| 299 |
+
cap.release()
|
| 300 |
+
return image_path
|
| 301 |
+
|
| 302 |
+
def detect_objects(self, image_path):
|
| 303 |
+
try:
|
| 304 |
+
image = cv2.imread(image_path)
|
| 305 |
+
height, width = image.shape[:2]
|
| 306 |
+
self.net.setInput(cv2.dnn.blobFromImage(image, scalefactor=1/255, size=(416, 416), swapRB=True, crop=False))
|
| 307 |
+
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
|
| 308 |
+
for detection in outs[0]:
|
| 309 |
+
confidence = detection[5:]
|
| 310 |
+
class_id = np.argmax(confidence)
|
| 311 |
+
confidence_score = confidence[class_id]
|
| 312 |
+
if confidence_score > 0.5: # Confidence threshold
|
| 313 |
+
box = detection[:4] * np.array([width, height, width, height])
|
| 314 |
+
center_x, center_y, box_width, box_height = box.astype(int)
|
| 315 |
+
start_x, start_y = int(center_x - box_width / 2), int(center_y - box_height / 2)
|
| 316 |
+
end_x, end_y = int(center_x + box_width / 2), int(center_y + box_height / 2)
|
| 317 |
+
cv2.rectangle(image, (start_x, start_y), (end_x, end_y), (0, 255, 0), 2)
|
| 318 |
+
cv2.putText(image, f"{class_id} {confidence_score:.2f}", (start_x, start_y - 10),
|
| 319 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 320 |
+
cv2.imwrite("object_detected.jpg", image)
|
| 321 |
+
return "object_detected.jpg"
|
| 322 |
+
except Exception as e:
|
| 323 |
+
logging.error(f"Object detection error: {e}")
|
| 324 |
+
return None
|
| 325 |
+
|
| 326 |
+
def _detect_emotion(self, image_path):
|
| 327 |
+
try:
|
| 328 |
+
image = Image.open(image_path)
|
| 329 |
+
features = self.multimodal_processor.clip_model(image)
|
| 330 |
+
emotion = features[0][0]
|
| 331 |
+
return f"Detected Emotion: {emotion}"
|
| 332 |
+
except Exception as e:
|
| 333 |
+
logging.error(f"Emotion detection error: {e}")
|
| 334 |
+
return "Emotion detection failed."
|
| 335 |
+
|
| 336 |
+
def data_analysis():
|
| 337 |
+
|
| 338 |
+
# Function to load data
|
| 339 |
+
def load_data():
|
| 340 |
+
file_path = input("Enter the dataset path: ").strip()
|
| 341 |
+
try:
|
| 342 |
+
if file_path.endswith('.csv'):
|
| 343 |
+
data = pd.read_csv(file_path)
|
| 344 |
+
elif file_path.endswith('.xlsx'):
|
| 345 |
+
data = pd.read_excel(file_path)
|
| 346 |
+
elif file_path.endswith('.json'):
|
| 347 |
+
data = pd.read_json(file_path)
|
| 348 |
+
else:
|
| 349 |
+
raise ValueError("Unsupported file format. Use CSV, Excel, or JSON.")
|
| 350 |
+
print("Data loaded successfully!")
|
| 351 |
+
return data
|
| 352 |
+
except Exception as e:
|
| 353 |
+
print(f"Error loading data: {e}")
|
| 354 |
+
return None
|
| 355 |
+
|
| 356 |
+
# Function to clean data
|
| 357 |
+
def clean_data(data):
|
| 358 |
+
print("\nCleaning data...")
|
| 359 |
+
data.fillna(data.mean(), inplace=True)
|
| 360 |
+
data.drop_duplicates(inplace=True)
|
| 361 |
+
for col in data.select_dtypes(include=np.number):
|
| 362 |
+
z_scores = np.abs(stats.zscore(data[col]))
|
| 363 |
+
data = data[(z_scores < 3)]
|
| 364 |
+
print("Data cleaning completed!")
|
| 365 |
+
return data
|
| 366 |
+
|
| 367 |
+
# Function for exploratory data analysis
|
| 368 |
+
def perform_eda(data):
|
| 369 |
+
print("\nPerforming EDA...")
|
| 370 |
+
profile = ProfileReport(data, title="EDA Report", explorative=True)
|
| 371 |
+
profile.to_file("eda_report.html")
|
| 372 |
+
sns.heatmap(data.corr(), annot=True, cmap="coolwarm")
|
| 373 |
+
plt.title("Correlation Matrix")
|
| 374 |
+
plt.show()
|
| 375 |
+
print("EDA report saved as 'eda_report.html'.")
|
| 376 |
+
|
| 377 |
+
# Function for feature engineering
|
| 378 |
+
def feature_engineering(data):
|
| 379 |
+
print("\nPerforming feature engineering...")
|
| 380 |
+
if 'time' in data.columns:
|
| 381 |
+
transformer = fe.CyclicFeatures(variables=['time'], max_value=24)
|
| 382 |
+
data = transformer.fit_transform(data)
|
| 383 |
+
print("Cyclic features created!")
|
| 384 |
+
else:
|
| 385 |
+
print("'time' column not found. Skipping cyclic features.")
|
| 386 |
+
return data
|
| 387 |
+
|
| 388 |
+
# Function to build and train a combined deep learning model with pre-trained layers
|
| 389 |
+
def build_and_train_dnn(data):
|
| 390 |
+
print("\nBuilding and training combined deep learning model...")
|
| 391 |
+
target = data.columns[-1] # Assume last column is the target
|
| 392 |
+
features = data.drop(columns=[target])
|
| 393 |
+
labels = data[target]
|
| 394 |
+
|
| 395 |
+
# Encode labels if categorical
|
| 396 |
+
if labels.dtypes == 'object':
|
| 397 |
+
labels = LabelEncoder().fit_transform(labels)
|
| 398 |
+
|
| 399 |
+
# Split the data
|
| 400 |
+
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)
|
| 401 |
+
scaler = StandardScaler()
|
| 402 |
+
X_train = scaler.fit_transform(X_train)
|
| 403 |
+
X_test = scaler.transform(X_test)
|
| 404 |
+
|
| 405 |
+
# Combined model architecture
|
| 406 |
+
model = Sequential([
|
| 407 |
+
Dense(128, activation='relu', input_dim=X_train.shape[1]),
|
| 408 |
+
BatchNormalization(),
|
| 409 |
+
Dropout(0.3),
|
| 410 |
+
Dense(64, activation='relu'),
|
| 411 |
+
BatchNormalization(),
|
| 412 |
+
Dense(32, activation='relu'),
|
| 413 |
+
Dropout(0.2),
|
| 414 |
+
Dense(1, activation='sigmoid') # For binary classification
|
| 415 |
+
])
|
| 416 |
+
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
| 417 |
+
model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2)
|
| 418 |
+
|
| 419 |
+
# Evaluate the model
|
| 420 |
+
y_pred = (model.predict(X_test) > 0.5).astype("int32")
|
| 421 |
+
print("\nModel Performance:")
|
| 422 |
+
print(classification_report(y_test, y_pred))
|
| 423 |
+
return model
|
| 424 |
+
|
| 425 |
+
# Function for YOLO object detection
|
| 426 |
+
def yolo_object_detection(source="input_video.mp4"):
|
| 427 |
+
print("\nPerforming object detection...")
|
| 428 |
+
yolo_model = YOLO('yolov8n.pt') # Pre-trained YOLO model
|
| 429 |
+
yolo_model.predict(source=source, save=True)
|
| 430 |
+
print("YOLO object detection completed. Results saved!")
|
| 431 |
+
|
| 432 |
+
# Function for Unity ML-Agents integration
|
| 433 |
+
def unity_integration(unity_env_path):
|
| 434 |
+
print("\nIntegrating Unity ML-Agents...")
|
| 435 |
+
if os.path.exists(unity_env_path):
|
| 436 |
+
unity_env = UnityEnvironment(file_name=unity_env_path)
|
| 437 |
+
unity_env.reset()
|
| 438 |
+
print("Unity environment loaded!")
|
| 439 |
+
else:
|
| 440 |
+
print("Unity environment not found. Skipping Unity integration.")
|
| 441 |
+
|
| 442 |
+
# Function to save outputs
|
| 443 |
+
def save_outputs(data):
|
| 444 |
+
os.makedirs("outputs", exist_ok=True)
|
| 445 |
+
data.to_csv("outputs/cleaned_data.csv", index=False)
|
| 446 |
+
shutil.move("eda_report.html", "outputs/eda_report.html")
|
| 447 |
+
print("All outputs saved in 'outputs' folder!")
|
| 448 |
+
|
| 449 |
+
# Main function to execute the workflow
|
| 450 |
+
def main():
|
| 451 |
+
try:
|
| 452 |
+
# Step 1: Load Data
|
| 453 |
+
data = load_data()
|
| 454 |
+
if data is None:
|
| 455 |
+
return
|
| 456 |
+
|
| 457 |
+
# Step 2: Clean Data
|
| 458 |
+
data = clean_data(data)
|
| 459 |
+
|
| 460 |
+
# Step 3: EDA
|
| 461 |
+
perform_eda(data)
|
| 462 |
+
|
| 463 |
+
# Step 4: Feature Engineering
|
| 464 |
+
data = feature_engineering(data)
|
| 465 |
+
|
| 466 |
+
# Step 5: Train Combined Deep Learning Model
|
| 467 |
+
model = build_and_train_dnn(data)
|
| 468 |
+
|
| 469 |
+
# Step 6: YOLO Object Detection
|
| 470 |
+
yolo_object_detection()
|
| 471 |
+
|
| 472 |
+
# Step 7: Unity ML-Agents Integration
|
| 473 |
+
unity_env_path = input("\nEnter Unity environment path (optional): ").strip()
|
| 474 |
+
if unity_env_path:
|
| 475 |
+
unity_integration(unity_env_path)
|
| 476 |
+
|
| 477 |
+
# Step 8: Save Outputs
|
| 478 |
+
save_outputs(data)
|
| 479 |
+
|
| 480 |
+
print("\nAll tasks completed successfully!")
|
| 481 |
+
except Exception as e:
|
| 482 |
+
print(f"An error occurred: {e}")
|
| 483 |
+
|
| 484 |
+
# Entry point
|
| 485 |
+
#if __name__ == "__main__":
|
| 486 |
+
# main()
|
| 487 |
+
|
| 488 |
+
def generate_image(self, text):
|
| 489 |
+
try:
|
| 490 |
+
dalle_model = pipeline("text-to-image", model=CONFIG["dalle_model"])
|
| 491 |
+
generated_image = dalle_model(text)[0]["generated_image"]
|
| 492 |
+
return generated_image
|
| 493 |
+
except Exception as e:
|
| 494 |
+
logging.error(f"Image generation error: {e}")
|
| 495 |
+
return "Image generation failed."
|
| 496 |
+
|
| 497 |
+
def generate_music(self, prompt):
|
| 498 |
+
try:
|
| 499 |
+
musenet_model = pipeline("music-generation", model=CONFIG["musenet_model"])
|
| 500 |
+
generated_music = musenet_model(prompt)[0]["generated_music"]
|
| 501 |
+
return generated_music
|
| 502 |
+
except Exception as e:
|
| 503 |
+
logging.error(f"Music generation error: {e}")
|
| 504 |
+
return "Music generation failed."
|
| 505 |
+
|
| 506 |
+
async def run(self):
|
| 507 |
+
logging.info("Ultron started.")
|
| 508 |
+
while True:
|
| 509 |
+
user_input = input("Enter your query (or type 'exit'): ")
|
| 510 |
+
if user_input.lower() in ["exit", "quit"]:
|
| 511 |
+
logging.info("Shutting down Ultron. Goodbye!")
|
| 512 |
+
break
|
| 513 |
+
|
| 514 |
+
response = await self.process_query(user_input)
|
| 515 |
+
print(f"Ultron Response: {response}")
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
# Main Execution
|
| 519 |
if __name__ == "__main__":
|
| 520 |
+
ultron = Ultron()
|
| 521 |
+
asyncio.run(ultron.run())
|