Liyas commited on
Commit
28db5b0
·
verified ·
1 Parent(s): fcf765f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +518 -61
app.py CHANGED
@@ -1,64 +1,521 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
1
+ #"👑Ultron-Praim👑"
2
+ import os
3
+ import asyncio
4
+ import logging
5
+ from transformers import AutoTokenizer, TFAutoModel, pipeline
6
+ from sentence_transformers import SentenceTransformer
7
+ from rl.agents import PPOAgent, DQNAgent, SACAgent, MetaRLAgent
8
+ from rl.memory import SequentialMemory
9
+ import tensorflow as tf
10
+ import numpy as np
11
+ import torch
12
+ import pandas as pd
13
+ import shutil
14
+ import matplotlib.pyplot as plt
15
+ import seaborn as sns
16
+ from pandas_profiling import ProfileReport
17
+ from sklearn.model_selection import train_test_split
18
+ from sklearn.metrics import classification_report
19
+ from sklearn.preprocessing import StandardScaler, LabelEncoder
20
+ from tensorflow.keras.models import Sequential, load_model
21
+ from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
22
+ from ultralytics import YOLO
23
+ from mlagents_envs.environment import UnityEnvironment
24
+ from scipy import stats
25
+ import feature_engine.creation as fe
26
+ from PIL import Image
27
+ import cv2
28
+ import faiss
29
+ from cryptography.fernet import Fernet
30
+ import pyttsx3 # Text-to-Speech library
31
+ import whisper # Whisper library for STT
32
+ import requests
33
+ from bs4 import BeautifulSoup # Web Scraping
34
+ import networkx as nx # Knowledge Graph Management
35
+ import multiprocessing # Multiprocessing for real-time task handling
36
+ import qiskit # Quantum Computing Library
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ # Logging Configuration
39
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
40
 
41
+ # Configuration
42
+ CONFIG = {
43
+ "learning_rate": 1e-4,
44
+ "memory_limit": 10000,
45
+ "nb_actions": 5,
46
+ "tokenizer_model": "bert-base-uncased",
47
+ "sentence_embedder": "all-MiniLM-L6-v2",
48
+ "multimodal_model": "openai/clip-vit-base-patch32",
49
+ "index_path": "knowledge_index.faiss",
50
+ "whisper_model": "openai/whisper-base",
51
+ "t5_model": "t5-base", # Few-Shot/Zero-Shot Learning
52
+ "automl_model": "h2o.ai/automl", # AutoML Placeholder
53
+ "emotion_model": "microsoft/FacialEmotionRecognition", # Emotion Detection Model
54
+ "yolo_model": "yolov3.cfg", # YOLO Configuration
55
+ "yolo_weights": "yolov3.weights", # YOLO Weights
56
+ "yolo_classes": "coco.names", # YOLO Classes
57
+ "dalle_model": "dalle-mini/dalle-mini-1", # Text-to-Image Model
58
+ "musenet_model": "muse-net/musenet-24000", # Music Generation Model
59
+ "quantum_backend": "qiskit.basicAer", # Quantum Computing Backend
60
+ "tts_model": "facebook/tts-en-transformer" # Advanced Text-to-Speech
61
+ }
62
+
63
+ # Initialize Models
64
+ tokenizer = AutoTokenizer.from_pretrained(CONFIG["tokenizer_model"])
65
+ nlp_model = TFAutoModel.from_pretrained(CONFIG["tokenizer_model"])
66
+ embedder = SentenceTransformer(CONFIG["sentence_embedder"])
67
+
68
+ # Initialize Whisper for Speech-to-Text
69
+ whisper_model = whisper.load_model(CONFIG["whisper_model"])
70
+
71
+ # Initialize T5 for Few-Shot/Zero-Shot Learning
72
+ t5_model = pipeline("text-generation", model=CONFIG["t5_model"])
73
+
74
+ # Initialize Advanced TTS and VALL-E
75
+ tts_model = pipeline("text-to-speech", model=CONFIG["tts_model"])
76
+
77
+ # Memory Classes
78
+ class ContextualMemory:
79
+ def __init__(self):
80
+ self.short_term_memory = []
81
+ self.long_term_memory = []
82
+
83
+ def add_to_memory(self, query, response, memory_type="short"):
84
+ memory = {"query": query, "response": response}
85
+ if memory_type == "short":
86
+ self.short_term_memory.append(memory)
87
+ if len(self.short_term_memory) > CONFIG["memory_limit"]:
88
+ self.short_term_memory.pop(0)
89
+ elif memory_type == "long":
90
+ self.long_term_memory.append(memory)
91
+
92
+ def retrieve_memory(self, memory_type="short"):
93
+ return self.short_term_memory if memory_type == "short" else self.long_term_memory
94
+
95
+
96
+
97
+ # Security Module
98
+ class SecurityHandler:
99
+ def __init__(self):
100
+ self.key = Fernet.generate_key()
101
+ self.cipher = Fernet(self.key)
102
+
103
+ def encrypt(self, data):
104
+ return self.cipher.encrypt(data.encode())
105
+
106
+ def decrypt(self, data):
107
+ return self.cipher.decrypt(data).decode()
108
+
109
+
110
+ # Reinforcement Learning Agents
111
+ class RLAgent:
112
+ def __init__(self, model_type="PPO"):
113
+ self.model_type = model_type
114
+ self.agent = self._initialize_agent()
115
+
116
+ def _initialize_agent(self):
117
+ if self.model_type == "PPO":
118
+ return PPOAgent()
119
+ elif self.model_type == "DQN":
120
+ return DQNAgent()
121
+ elif self.model_type == "SAC":
122
+ return SACAgent()
123
+ elif self.model_type == "MetaRL":
124
+ return MetaRLAgent()
125
+ else:
126
+ raise ValueError("Unsupported RL model type")
127
+
128
+ def act(self, state):
129
+ # Placeholder: Reinforcement learning decision-making
130
+ return f"Decision based on {self.model_type}: {state}"
131
+
132
+
133
+ # Core AI System
134
+ class Ultron:
135
+ def __init__(self):
136
+ self.context_memory = ContextualMemory()
137
+ self.multimodal_processor = MultimodalProcessor()
138
+ self.task_manager = TaskManager()
139
+ self.security = SecurityHandler()
140
+ self.rl_agents = {
141
+ "GandMaster": RLAgent(model_type="PPO"),
142
+ "MasterMind": RLAgent(model_type="PPO"),
143
+ "BrainA1": RLAgent(model_type="PPO"),
144
+ "BrainA2": RLAgent(model_type="DQN"),
145
+ "BrainA3": RLAgent(model_type="SAC"),
146
+ "BrainA4": RLAgent(model_type="HRL"),
147
+ "BrainA5": RLAgent(model_type="MetaRL"),
148
+ }
149
+ self.speaker = pyttsx3.init() # Initialize text-to-speech engine
150
+ self.quantum_processor = QuantumProcessor() # Initialize Quantum Processor
151
+ self.tts_model = tts_model # Advanced Text-to-Speech Model
152
+
153
+ def speak(self, text):
154
+ """Converts text to speech."""
155
+ try:
156
+ self.speaker.say(text)
157
+ self.speaker.runAndWait()
158
+ except Exception as e:
159
+ logging.error(f"Text-to-Speech error: {e}")
160
+
161
+ async def process_query(self, query, input_type="text", file_path=None):
162
+ try:
163
+ if input_type == "text":
164
+ vectorized_query = tokenizer(query, return_tensors="tf", padding=True, truncation=True)
165
+ response = f"Processed text query: {query}"
166
+
167
+ elif input_type == "image":
168
+ response = self.multimodal_processor.process_image(file_path)
169
+
170
+ elif input_type == "video":
171
+ response = self.multimodal_processor.process_video(file_path)
172
+
173
+ elif input_type == "camera":
174
+ image_path = self.multimodal_processor.capture_image_from_camera()
175
+ response = self.multimodal_processor.process_image(image_path)
176
+
177
+ elif input_type == "speech":
178
+ result = whisper_model.transcribe(file_path)
179
+ response = result["text"]
180
+
181
+ elif input_type == "web":
182
+ response = self._web_scrape(query)
183
+
184
+ elif input_type == "emotion":
185
+ response = self._detect_emotion(file_path)
186
+
187
+ elif input_type == "yolo":
188
+ response = self.multimodal_processor.detect_objects(file_path)
189
+
190
+ elif input_type == "dalle":
191
+ response = self.generate_image(query)
192
+
193
+ elif input_type == "musenet":
194
+ response = self.generate_music(query)
195
+
196
+ elif input_type == "quantum":
197
+ circuit = qiskit.QuantumCircuit(2)
198
+ circuit.h(0)
199
+ circuit.cx(0, 1)
200
+ response = self.quantum_processor.run_quantum_circuit(circuit)
201
+
202
+ elif input_type == "tts":
203
+ response = self.tts_model(query)
204
+
205
+ else:
206
+ response = "Unsupported input type."
207
+
208
+ # Few-Shot/Zero-Shot Learning with T5
209
+ if input_type == "text":
210
+ if query.lower() not in [memory["query"].lower() for memory in self.context_memory.short_term_memory]:
211
+ t5_response = t5_model(f"Translate this to a query: {query}")[0]["generated_text"]
212
+ response += f" (Generated response: {t5_response})"
213
+
214
+ # Reinforcement Learning with Human Feedback
215
+ if input_type == "text":
216
+ feedback = input(f"Was the response helpful? (yes/no): ")
217
+ if feedback.lower() == "yes":
218
+ decision = self.rl_agents["GandMaster"].act(response)
219
+ self.context_memory.add_to_memory(query, response)
220
+ self.speak(response) # Speak function invoked for each response
221
+ return f"{response} | RL Decision: {decision}"
222
+ elif feedback.lower() == "no":
223
+ decision = self.rl_agents["GandMaster"].act("Incorrect response, seeking improvements.")
224
+ self.context_memory.add_to_memory(query, "Incorrect response", memory_type="short")
225
+ return "Sorry, let's try again with a better response."
226
+ return response
227
+
228
+ except Exception as e:
229
+ logging.error(f"Query processing error: {e}")
230
+ return "An error occurred while processing the query."
231
+
232
+ def _web_scrape(self, query):
233
+ try:
234
+ url = f"https://www.google.com/search?q={query.replace(' ', '+')}"
235
+ headers = {'User-Agent': 'Mozilla/5.0'}
236
+ page = requests.get(url, headers=headers)
237
+ soup = BeautifulSoup(page.content, 'html.parser')
238
+ result = soup.find('div', {'id': 'main'}).text.strip()
239
+ return result[:500] # Limit results to avoid long responses
240
+ except Exception as e:
241
+ logging.error(f"Web scraping error: {e}")
242
+ return "Web scraping failed."
243
+
244
+
245
+ # Task Management with Multiprocessing
246
+ class TaskManager:
247
+ def __init__(self):
248
+ self.tasks = []
249
+
250
+ def add_task(self, task_name, priority=1):
251
+ self.tasks.append({"task": task_name, "priority": priority})
252
+ self.tasks = sorted(self.tasks, key=lambda x: x["priority"], reverse=True)
253
+
254
+ def get_next_task(self):
255
+ return self.tasks.pop(0) if self.tasks else None
256
+
257
+
258
+ # Multimodal Processing
259
+ class MultimodalProcessor:
260
+ def __init__(self):
261
+ self.clip_model = pipeline("feature-extraction", model=CONFIG["multimodal_model"])
262
+ self.net = cv2.dnn.readNetFromDarknet(CONFIG["yolo_model"], CONFIG["yolo_weights"])
263
+ self.net.setInput(cv2.dnn.blobFromImage)
264
+
265
+ def process_image(self, image_path):
266
+ try:
267
+ image = Image.open(image_path)
268
+ features = self.clip_model(image)
269
+ return features
270
+ except Exception as e:
271
+ logging.error(f"Image processing error: {e}")
272
+ return None
273
+
274
+ def process_video(self, video_path):
275
+ try:
276
+ video_frames = self._extract_video_frames(video_path)
277
+ features = [self.clip_model(frame) for frame in video_frames]
278
+ return features
279
+ except Exception as e:
280
+ logging.error(f"Video processing error: {e}")
281
+ return None
282
+
283
+ def _extract_video_frames(self, video_path, frame_rate=8):
284
+ cap = cv2.VideoCapture(video_path)
285
+ frames = []
286
+ while cap.isOpened():
287
+ ret, frame = cap.read()
288
+ if not ret:
289
+ break
290
+ frames.append(frame)
291
+ cap.release()
292
+ return frames[::frame_rate]
293
+
294
+ def capture_image_from_camera(self):
295
+ cap = cv2.VideoCapture(0)
296
+ ret, frame = cap.read()
297
+ image_path = "camera_capture.jpg"
298
+ cv2.imwrite(image_path, frame)
299
+ cap.release()
300
+ return image_path
301
+
302
+ def detect_objects(self, image_path):
303
+ try:
304
+ image = cv2.imread(image_path)
305
+ height, width = image.shape[:2]
306
+ self.net.setInput(cv2.dnn.blobFromImage(image, scalefactor=1/255, size=(416, 416), swapRB=True, crop=False))
307
+ outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
308
+ for detection in outs[0]:
309
+ confidence = detection[5:]
310
+ class_id = np.argmax(confidence)
311
+ confidence_score = confidence[class_id]
312
+ if confidence_score > 0.5: # Confidence threshold
313
+ box = detection[:4] * np.array([width, height, width, height])
314
+ center_x, center_y, box_width, box_height = box.astype(int)
315
+ start_x, start_y = int(center_x - box_width / 2), int(center_y - box_height / 2)
316
+ end_x, end_y = int(center_x + box_width / 2), int(center_y + box_height / 2)
317
+ cv2.rectangle(image, (start_x, start_y), (end_x, end_y), (0, 255, 0), 2)
318
+ cv2.putText(image, f"{class_id} {confidence_score:.2f}", (start_x, start_y - 10),
319
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
320
+ cv2.imwrite("object_detected.jpg", image)
321
+ return "object_detected.jpg"
322
+ except Exception as e:
323
+ logging.error(f"Object detection error: {e}")
324
+ return None
325
+
326
+ def _detect_emotion(self, image_path):
327
+ try:
328
+ image = Image.open(image_path)
329
+ features = self.multimodal_processor.clip_model(image)
330
+ emotion = features[0][0]
331
+ return f"Detected Emotion: {emotion}"
332
+ except Exception as e:
333
+ logging.error(f"Emotion detection error: {e}")
334
+ return "Emotion detection failed."
335
+
336
+ def data_analysis():
337
+
338
+ # Function to load data
339
+ def load_data():
340
+ file_path = input("Enter the dataset path: ").strip()
341
+ try:
342
+ if file_path.endswith('.csv'):
343
+ data = pd.read_csv(file_path)
344
+ elif file_path.endswith('.xlsx'):
345
+ data = pd.read_excel(file_path)
346
+ elif file_path.endswith('.json'):
347
+ data = pd.read_json(file_path)
348
+ else:
349
+ raise ValueError("Unsupported file format. Use CSV, Excel, or JSON.")
350
+ print("Data loaded successfully!")
351
+ return data
352
+ except Exception as e:
353
+ print(f"Error loading data: {e}")
354
+ return None
355
+
356
+ # Function to clean data
357
+ def clean_data(data):
358
+ print("\nCleaning data...")
359
+ data.fillna(data.mean(), inplace=True)
360
+ data.drop_duplicates(inplace=True)
361
+ for col in data.select_dtypes(include=np.number):
362
+ z_scores = np.abs(stats.zscore(data[col]))
363
+ data = data[(z_scores < 3)]
364
+ print("Data cleaning completed!")
365
+ return data
366
+
367
+ # Function for exploratory data analysis
368
+ def perform_eda(data):
369
+ print("\nPerforming EDA...")
370
+ profile = ProfileReport(data, title="EDA Report", explorative=True)
371
+ profile.to_file("eda_report.html")
372
+ sns.heatmap(data.corr(), annot=True, cmap="coolwarm")
373
+ plt.title("Correlation Matrix")
374
+ plt.show()
375
+ print("EDA report saved as 'eda_report.html'.")
376
+
377
+ # Function for feature engineering
378
+ def feature_engineering(data):
379
+ print("\nPerforming feature engineering...")
380
+ if 'time' in data.columns:
381
+ transformer = fe.CyclicFeatures(variables=['time'], max_value=24)
382
+ data = transformer.fit_transform(data)
383
+ print("Cyclic features created!")
384
+ else:
385
+ print("'time' column not found. Skipping cyclic features.")
386
+ return data
387
+
388
+ # Function to build and train a combined deep learning model with pre-trained layers
389
+ def build_and_train_dnn(data):
390
+ print("\nBuilding and training combined deep learning model...")
391
+ target = data.columns[-1] # Assume last column is the target
392
+ features = data.drop(columns=[target])
393
+ labels = data[target]
394
+
395
+ # Encode labels if categorical
396
+ if labels.dtypes == 'object':
397
+ labels = LabelEncoder().fit_transform(labels)
398
+
399
+ # Split the data
400
+ X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)
401
+ scaler = StandardScaler()
402
+ X_train = scaler.fit_transform(X_train)
403
+ X_test = scaler.transform(X_test)
404
+
405
+ # Combined model architecture
406
+ model = Sequential([
407
+ Dense(128, activation='relu', input_dim=X_train.shape[1]),
408
+ BatchNormalization(),
409
+ Dropout(0.3),
410
+ Dense(64, activation='relu'),
411
+ BatchNormalization(),
412
+ Dense(32, activation='relu'),
413
+ Dropout(0.2),
414
+ Dense(1, activation='sigmoid') # For binary classification
415
+ ])
416
+ model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
417
+ model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2)
418
+
419
+ # Evaluate the model
420
+ y_pred = (model.predict(X_test) > 0.5).astype("int32")
421
+ print("\nModel Performance:")
422
+ print(classification_report(y_test, y_pred))
423
+ return model
424
+
425
+ # Function for YOLO object detection
426
+ def yolo_object_detection(source="input_video.mp4"):
427
+ print("\nPerforming object detection...")
428
+ yolo_model = YOLO('yolov8n.pt') # Pre-trained YOLO model
429
+ yolo_model.predict(source=source, save=True)
430
+ print("YOLO object detection completed. Results saved!")
431
+
432
+ # Function for Unity ML-Agents integration
433
+ def unity_integration(unity_env_path):
434
+ print("\nIntegrating Unity ML-Agents...")
435
+ if os.path.exists(unity_env_path):
436
+ unity_env = UnityEnvironment(file_name=unity_env_path)
437
+ unity_env.reset()
438
+ print("Unity environment loaded!")
439
+ else:
440
+ print("Unity environment not found. Skipping Unity integration.")
441
+
442
+ # Function to save outputs
443
+ def save_outputs(data):
444
+ os.makedirs("outputs", exist_ok=True)
445
+ data.to_csv("outputs/cleaned_data.csv", index=False)
446
+ shutil.move("eda_report.html", "outputs/eda_report.html")
447
+ print("All outputs saved in 'outputs' folder!")
448
+
449
+ # Main function to execute the workflow
450
+ def main():
451
+ try:
452
+ # Step 1: Load Data
453
+ data = load_data()
454
+ if data is None:
455
+ return
456
+
457
+ # Step 2: Clean Data
458
+ data = clean_data(data)
459
+
460
+ # Step 3: EDA
461
+ perform_eda(data)
462
+
463
+ # Step 4: Feature Engineering
464
+ data = feature_engineering(data)
465
+
466
+ # Step 5: Train Combined Deep Learning Model
467
+ model = build_and_train_dnn(data)
468
+
469
+ # Step 6: YOLO Object Detection
470
+ yolo_object_detection()
471
+
472
+ # Step 7: Unity ML-Agents Integration
473
+ unity_env_path = input("\nEnter Unity environment path (optional): ").strip()
474
+ if unity_env_path:
475
+ unity_integration(unity_env_path)
476
+
477
+ # Step 8: Save Outputs
478
+ save_outputs(data)
479
+
480
+ print("\nAll tasks completed successfully!")
481
+ except Exception as e:
482
+ print(f"An error occurred: {e}")
483
+
484
+ # Entry point
485
+ #if __name__ == "__main__":
486
+ # main()
487
+
488
+ def generate_image(self, text):
489
+ try:
490
+ dalle_model = pipeline("text-to-image", model=CONFIG["dalle_model"])
491
+ generated_image = dalle_model(text)[0]["generated_image"]
492
+ return generated_image
493
+ except Exception as e:
494
+ logging.error(f"Image generation error: {e}")
495
+ return "Image generation failed."
496
+
497
+ def generate_music(self, prompt):
498
+ try:
499
+ musenet_model = pipeline("music-generation", model=CONFIG["musenet_model"])
500
+ generated_music = musenet_model(prompt)[0]["generated_music"]
501
+ return generated_music
502
+ except Exception as e:
503
+ logging.error(f"Music generation error: {e}")
504
+ return "Music generation failed."
505
+
506
+ async def run(self):
507
+ logging.info("Ultron started.")
508
+ while True:
509
+ user_input = input("Enter your query (or type 'exit'): ")
510
+ if user_input.lower() in ["exit", "quit"]:
511
+ logging.info("Shutting down Ultron. Goodbye!")
512
+ break
513
+
514
+ response = await self.process_query(user_input)
515
+ print(f"Ultron Response: {response}")
516
+
517
+
518
+ # Main Execution
519
  if __name__ == "__main__":
520
+ ultron = Ultron()
521
+ asyncio.run(ultron.run())