Portable-Depression-Detecting-System / test_paraformer_offline.py
Liusuthu's picture
Upload folder using huggingface_hub
890de26 verified
raw
history blame
2.4 kB
# -*- coding:utf-8 -*-
import logging
from paraformer import AudioReader, CttPunctuator, FSMNVad, ParaformerOffline
import numpy as np
import sounddevice as sd
import time
import soundfile as sf
import chardet
import torch
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s %(levelname)s] [%(filename)s:%(lineno)d %(module)s.%(funcName)s] %(message)s",
)
recorded_audio = []
sample_rate = 16000
def luyin():
def callback(indata, frames, time, status):
if status:
print('录音错误:', status)
if recording:
# 将录音数据追加到变量中
# if indata.copy()>1.5 or indata.copy()< -1.5:
arr = np.array(indata.copy()) # 假设数组中有416个元素
sum_value = np.sum(arr)
recorded_audio.append(indata.copy())
a = int(input('请输入数字1开始:'))
if a == 1:
recording = True
stream = sd.InputStream(callback=callback, channels=1, samplerate=sample_rate, blocksize=4096)
stream.start()
begin = time.time()
b = int(input('请输入数字2停止:'))
if b == 2:
recording = False
print("Stop recording")
stream.stop()
fina = time.time()
t = fina - begin
print('录音时间为%ds' % t)
# print(recorded_audio)
if len(recorded_audio) == 0:
return "none"
else:
signal = np.vstack(recorded_audio)
sf.write("out.wav",np.array(signal),sample_rate)
# signal = torch.from_numpy(np.squeeze(signal)).float()
# print(signal)
# # result = chardet.detect(signal)
# # print(result['encoding'])
# recorded_audio.clear()
return signal
if __name__ == "__main__":
logging.info("Testing offline asr")
luyin()
audio = "out.wav"
speech, sample_rate = AudioReader.read_wav_file(audio)
model = ParaformerOffline()
vad = FSMNVad()
punc = CttPunctuator()
segments = vad.segments_offline(speech)
results = ""
for part in segments:
_result = model.infer_offline(
speech[part[0] * 16 : part[1] * 16], hot_words="任意热词 空格分开"
)
results += punc.punctuate(_result)[0]
logging.info(results)