Spaces:
Runtime error
Runtime error
XiaoYun Zhang
commited on
Commit
•
6abb254
0
Parent(s):
update
Browse files- .docker-compose +0 -0
- .gitattributes +35 -0
- .gitignore +18 -0
- .local_storage/user.json +14 -0
- LICENSE +21 -0
- README.md +13 -0
- app.py +302 -0
- di.py +51 -0
- embedding.py +56 -0
- index.py +207 -0
- model/document.py +98 -0
- model/record.py +8 -0
- model/user.py +13 -0
- requirements.txt +4 -0
- setting.py +18 -0
- setup.py +13 -0
- storage.py +48 -0
.docker-compose
ADDED
File without changes
|
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# .gitignore file for Python projects
|
2 |
+
# Covers most common project files and folders
|
3 |
+
|
4 |
+
.DS_Store
|
5 |
+
*.pyc
|
6 |
+
*.pyo
|
7 |
+
*.pyd
|
8 |
+
__pycache__
|
9 |
+
*.so
|
10 |
+
*.egg
|
11 |
+
*.egg-info
|
12 |
+
dist
|
13 |
+
build
|
14 |
+
docs/_build
|
15 |
+
.idea
|
16 |
+
venv
|
17 |
+
test
|
18 |
+
.env
|
.local_storage/user.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"user_name": "bigmiao",
|
3 |
+
"email": "g2260578356@gmail.com",
|
4 |
+
"full_name": "g2260578356",
|
5 |
+
"disabled": false,
|
6 |
+
"documents": [
|
7 |
+
{
|
8 |
+
"name": "mlnet_notebook_examples_v1.json.json",
|
9 |
+
"description": null,
|
10 |
+
"status": "done",
|
11 |
+
"url": "bigmiao-mlnet_examples.json"
|
12 |
+
}
|
13 |
+
]
|
14 |
+
}
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Xiaoyun Zhang
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Mlnet Samples
|
3 |
+
emoji: 😻
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.47.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fastapi as api
|
2 |
+
from typing import Annotated
|
3 |
+
from fastapi.security import OAuth2PasswordBearer, OAuth2AuthorizationCodeBearer, OAuth2PasswordRequestForm
|
4 |
+
from model.document import Document, PlainTextDocument, JsonDocument
|
5 |
+
import sys
|
6 |
+
from model.user import User
|
7 |
+
from fastapi import FastAPI, File, UploadFile
|
8 |
+
from di import initialize_di_for_app
|
9 |
+
import gradio as gr
|
10 |
+
import os
|
11 |
+
import json
|
12 |
+
SETTINGS, STORAGE, EMBEDDING, INDEX = initialize_di_for_app()
|
13 |
+
user_json_str = STORAGE.load('user.json')
|
14 |
+
USER = User.parse_raw(user_json_str)
|
15 |
+
|
16 |
+
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="/api/v1/auth/token")
|
17 |
+
app = api.FastAPI()
|
18 |
+
app.openapi_version = "3.0.0"
|
19 |
+
users = [USER]
|
20 |
+
async def get_current_user(token: str = api.Depends(oauth2_scheme)):
|
21 |
+
'''
|
22 |
+
Get current user
|
23 |
+
'''
|
24 |
+
for user in users:
|
25 |
+
if user.user_name == token:
|
26 |
+
return user
|
27 |
+
|
28 |
+
raise api.HTTPException(status_code=401, detail="Invalid authentication credentials")
|
29 |
+
|
30 |
+
|
31 |
+
@app.post("/api/v1/auth/token")
|
32 |
+
async def login(form_data: Annotated[OAuth2PasswordRequestForm, api.Depends()]):
|
33 |
+
'''
|
34 |
+
Login to get a token
|
35 |
+
'''
|
36 |
+
return {"access_token": form_data.username}
|
37 |
+
|
38 |
+
@app.post("/api/v1/uploadfile/", include_in_schema=False)
|
39 |
+
def create_upload_file(file: UploadFile = api.File(...)) -> Document:
|
40 |
+
'''
|
41 |
+
Upload a file
|
42 |
+
'''
|
43 |
+
fileUrl = f'{USER.user_name}-{file.filename}'
|
44 |
+
STORAGE.save(fileUrl, file.read())
|
45 |
+
|
46 |
+
# create plainTextDocument if the file is a text file
|
47 |
+
if file.filename.endswith('.txt'):
|
48 |
+
return PlainTextDocument(
|
49 |
+
name=file.filename,
|
50 |
+
status='uploading',
|
51 |
+
url=fileUrl,
|
52 |
+
embedding=EMBEDDING,
|
53 |
+
storage=STORAGE,
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
raise api.HTTPException(status_code=400, detail="File type not supported")
|
57 |
+
|
58 |
+
|
59 |
+
### /api/v1/.well-known
|
60 |
+
#### Get /openapi.json
|
61 |
+
# Get the openapi json file
|
62 |
+
@app.get("/api/v1/.well-known/openapi.json")
|
63 |
+
async def get_openapi():
|
64 |
+
'''
|
65 |
+
otherwise return 401
|
66 |
+
'''
|
67 |
+
|
68 |
+
# get a list of document names + description
|
69 |
+
document_list = [[doc.name, doc.description] for doc in USER.documents]
|
70 |
+
|
71 |
+
# get openapi json from api
|
72 |
+
openapi = app.openapi().copy()
|
73 |
+
|
74 |
+
openapi['info']['title'] = 'DocumentSearch'
|
75 |
+
description = f'''Search documents with a query.
|
76 |
+
## Documents
|
77 |
+
{document_list}
|
78 |
+
'''
|
79 |
+
|
80 |
+
openapi['info']['description'] = description
|
81 |
+
|
82 |
+
# update description in /api/v1/search
|
83 |
+
openapi['paths']['/api/v1/search']['get']['description'] += f'''
|
84 |
+
Available documents:
|
85 |
+
{document_list}
|
86 |
+
'''
|
87 |
+
|
88 |
+
# filter out unnecessary endpoints
|
89 |
+
openapi['paths'] = {
|
90 |
+
'/api/v1/search': openapi['paths']['/api/v1/search'],
|
91 |
+
}
|
92 |
+
|
93 |
+
# remove components
|
94 |
+
openapi['components'] = {}
|
95 |
+
|
96 |
+
# return the openapi json
|
97 |
+
return openapi
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
### /api/v1/document
|
102 |
+
#### Get /list
|
103 |
+
# Get the list of documents
|
104 |
+
@app.get("/api/v1/document/list")
|
105 |
+
# async def get_document_list(user: Annotated[User, api.Depends(get_current_user)]) -> list[Document]:
|
106 |
+
async def get_document_list() -> list[Document]:
|
107 |
+
'''
|
108 |
+
Get the list of documents
|
109 |
+
'''
|
110 |
+
return USER.documents
|
111 |
+
|
112 |
+
#### Post /upload
|
113 |
+
# Upload a document
|
114 |
+
@app.post("/api/v1/document/upload")
|
115 |
+
# def upload_document(user: Annotated[User, api.Depends(get_current_user)], document: Annotated[Document, api.Depends(create_upload_file)]):
|
116 |
+
def upload_document(document: Annotated[Document, api.Depends(create_upload_file)]):
|
117 |
+
'''
|
118 |
+
Upload a document
|
119 |
+
'''
|
120 |
+
document.status = 'processing'
|
121 |
+
INDEX.load_or_update_document(user, document, progress)
|
122 |
+
document.status = 'done'
|
123 |
+
USER.documents.append(document)
|
124 |
+
|
125 |
+
#### Get /delete
|
126 |
+
# Delete a document
|
127 |
+
@app.get("/api/v1/document/delete")
|
128 |
+
# async def delete_document(user: Annotated[User, api.Depends(get_current_user)], document_name: str):
|
129 |
+
async def delete_document(document_name: str):
|
130 |
+
'''
|
131 |
+
Delete a document
|
132 |
+
'''
|
133 |
+
for doc in USER.documents:
|
134 |
+
if doc.name == document_name:
|
135 |
+
STORAGE.delete(doc.url)
|
136 |
+
INDEX.remove_document(USER, doc)
|
137 |
+
USER.documents.remove(doc)
|
138 |
+
return
|
139 |
+
|
140 |
+
raise api.HTTPException(status_code=404, detail="Document not found")
|
141 |
+
|
142 |
+
# Query the index
|
143 |
+
@app.get("/api/v1/search", operation_id=None,)
|
144 |
+
def search(
|
145 |
+
# user: Annotated[User, api.Depends(get_current_user)],
|
146 |
+
query: str,
|
147 |
+
document_name: str = None,
|
148 |
+
top_k: int = 10,
|
149 |
+
threshold: float = 0.5):
|
150 |
+
'''
|
151 |
+
Search documents with a query. It will return [top_k] results with a score higher than [threshold].
|
152 |
+
query: the query string, required
|
153 |
+
document_name: the document name, optional. You can provide this parameter to search in a specific document.
|
154 |
+
top_k: the number of results to return, optional. Default to 10.
|
155 |
+
threshold: the threshold of the results, optional. Default to 0.5.
|
156 |
+
'''
|
157 |
+
if document_name:
|
158 |
+
for doc in USER.documents:
|
159 |
+
if doc.name == document_name:
|
160 |
+
return INDEX.query_document(USER, doc, query, top_k, threshold)
|
161 |
+
|
162 |
+
raise api.HTTPException(status_code=404, detail="Document not found")
|
163 |
+
else:
|
164 |
+
return INDEX.query_index(USER, query, top_k, threshold)
|
165 |
+
|
166 |
+
def receive_signal(signalNumber, frame):
|
167 |
+
print('Received:', signalNumber)
|
168 |
+
sys.exit()
|
169 |
+
|
170 |
+
|
171 |
+
@app.on_event("startup")
|
172 |
+
async def startup_event():
|
173 |
+
import signal
|
174 |
+
signal.signal(signal.SIGINT, receive_signal)
|
175 |
+
# startup tasks
|
176 |
+
|
177 |
+
@app.on_event("shutdown")
|
178 |
+
def exit_event():
|
179 |
+
# save USER
|
180 |
+
STORAGE.save('user.json', USER.model_dump_json())
|
181 |
+
print('exit')
|
182 |
+
|
183 |
+
user = USER
|
184 |
+
|
185 |
+
def gradio_upload_document(file: File):
|
186 |
+
file_temp_path = file.name
|
187 |
+
# load file
|
188 |
+
file_name = os.path.basename(file_temp_path)
|
189 |
+
fileUrl = f'{USER.user_name}-{file_name}'
|
190 |
+
with open(file_temp_path, 'r', encoding='utf-8') as f:
|
191 |
+
STORAGE.save(fileUrl, f.read())
|
192 |
+
|
193 |
+
# create plainTextDocument if the file is a text file
|
194 |
+
doc = None
|
195 |
+
if file_name.endswith('.txt'):
|
196 |
+
doc = PlainTextDocument(
|
197 |
+
name=file_name,
|
198 |
+
status='uploading',
|
199 |
+
url=fileUrl,
|
200 |
+
embedding=EMBEDDING,
|
201 |
+
storage=STORAGE,
|
202 |
+
)
|
203 |
+
elif file_name.endswith('.json'):
|
204 |
+
doc = JsonDocument(
|
205 |
+
name=file_name,
|
206 |
+
status='uploading',
|
207 |
+
url=fileUrl,
|
208 |
+
embedding=EMBEDDING,
|
209 |
+
storage=STORAGE,
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
raise api.HTTPException(status_code=400, detail="File type not supported")
|
213 |
+
doc.status = 'processing'
|
214 |
+
INDEX.load_or_update_document(user, doc)
|
215 |
+
doc.status = 'done'
|
216 |
+
USER.documents.append(doc)
|
217 |
+
|
218 |
+
return f'uploaded {file_name}'
|
219 |
+
|
220 |
+
def gradio_query(query: str, document_name: str = None, top_k: int = 10, threshold: float = 0.5):
|
221 |
+
res_or_exception = search(query, document_name, top_k, threshold)
|
222 |
+
if isinstance(res_or_exception, api.HTTPException):
|
223 |
+
raise res_or_exception
|
224 |
+
|
225 |
+
# convert to json string
|
226 |
+
|
227 |
+
records = [record.model_dump(mode='json') for record in res_or_exception]
|
228 |
+
|
229 |
+
return json.dumps(records, indent=4)
|
230 |
+
|
231 |
+
with gr.Blocks() as ui:
|
232 |
+
gr.Markdown("#llm-memory")
|
233 |
+
|
234 |
+
with gr.Column():
|
235 |
+
gr.Markdown(
|
236 |
+
"""
|
237 |
+
## LLM Memory
|
238 |
+
""")
|
239 |
+
with gr.Row():
|
240 |
+
user_name = gr.Label(label="User name", value=USER.user_name)
|
241 |
+
|
242 |
+
# url to .well-known/openapi.json
|
243 |
+
gr.Label(label=".wellknown/openapi.json", value=f"/api/v1/.well-known/openapi.json")
|
244 |
+
|
245 |
+
# with gr.Tab("avaiable documents"):
|
246 |
+
# available_documents = gr.Label(label="avaiable documents", value="avaiable documents")
|
247 |
+
# refresh_btn = gr.Button(label="refresh", type="button")
|
248 |
+
# refresh_btn.click(lambda: '\r\n'.join([doc.name for doc in USER.documents]), None, available_documents)
|
249 |
+
# documents = USER.documents
|
250 |
+
# for document in documents:
|
251 |
+
# gr.Label(label=document.name, value=document.name)
|
252 |
+
# with gr.Tab("upload document"):
|
253 |
+
# with gr.Tab("upload .txt document"):
|
254 |
+
# file = gr.File(label="upload document", type="file", file_types=[".txt"])
|
255 |
+
# output = gr.Label(label="output", value="output")
|
256 |
+
# upload_btn = gr.Button("upload document", type="button")
|
257 |
+
# upload_btn.click(gradio_upload_document, file, output)
|
258 |
+
# with gr.Tab("upload .json document"):
|
259 |
+
# gr.Markdown(
|
260 |
+
# """
|
261 |
+
# The json document should be a list of objects, each object should have a `content` field. If you want to add more fields, you can add them in the `meta_data` field.
|
262 |
+
# For example:
|
263 |
+
# ```json
|
264 |
+
# [
|
265 |
+
# {
|
266 |
+
# "content": "hello world",
|
267 |
+
# "meta_data": {
|
268 |
+
# "title": "hello world",
|
269 |
+
# "author": "llm-memory"
|
270 |
+
# }
|
271 |
+
# },
|
272 |
+
# {
|
273 |
+
# "content": "hello world"
|
274 |
+
# "meta_data": {
|
275 |
+
# "title": "hello world",
|
276 |
+
# "author": "llm-memory"
|
277 |
+
# }
|
278 |
+
# }
|
279 |
+
# ]
|
280 |
+
# ```
|
281 |
+
|
282 |
+
# ## Note
|
283 |
+
# - The `meta_data` should be a dict which both keys and values are strings.
|
284 |
+
# """)
|
285 |
+
# file = gr.File(label="upload document", type="file", file_types=[".json"])
|
286 |
+
# output = gr.Label(label="output", value="output")
|
287 |
+
# upload_btn = gr.Button("upload document", type="button")
|
288 |
+
# upload_btn.click(gradio_upload_document, file, output)
|
289 |
+
with gr.Tab("search"):
|
290 |
+
query = gr.Textbox(label="search", placeholder="Query")
|
291 |
+
document = gr.Dropdown(label="document", choices=[None] + [doc.name for doc in USER.documents], placeholder="document, optional")
|
292 |
+
top_k = gr.Number(label="top_k", placeholder="top_k, optional", value=10)
|
293 |
+
threshold = gr.Number(label="threshold", placeholder="threshold, optional", value=0.5)
|
294 |
+
output = gr.Code(label="output", language="json", value="output")
|
295 |
+
query_btn = gr.Button("Query")
|
296 |
+
query_btn.click(gradio_query, [query, document, top_k, threshold], output, api_name="search")
|
297 |
+
|
298 |
+
|
299 |
+
gradio_app = gr.routes.App.create_app(ui)
|
300 |
+
app.mount("/", gradio_app)
|
301 |
+
|
302 |
+
ui.launch()
|
di.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from storage import LocalStorage, Storage
|
2 |
+
from setting import Settings
|
3 |
+
from embedding import AzureOpenAITextAda002, Embedding, OpenAITextAda002
|
4 |
+
from index import Index, QDrantVectorStore
|
5 |
+
from model.user import User
|
6 |
+
from qdrant_client import QdrantClient
|
7 |
+
|
8 |
+
def initialize_di_for_test() -> tuple[Settings, Storage,Embedding,Index]:
|
9 |
+
SETTINGS = Settings(_env_file='./test/.env.test')
|
10 |
+
STORAGE = LocalStorage('./test/test_storage')
|
11 |
+
if SETTINGS.embedding_use_azure:
|
12 |
+
EMBEDDING = AzureOpenAITextAda002(
|
13 |
+
api_base=SETTINGS.embedding_azure_openai_api_base,
|
14 |
+
model_name=SETTINGS.embedding_azure_openai_model_name,
|
15 |
+
api_key=SETTINGS.embedding_azure_openai_api_key,
|
16 |
+
)
|
17 |
+
else:
|
18 |
+
EMBEDDING = OpenAITextAda002(SETTINGS.openai_api_key)
|
19 |
+
INDEX = QDrantVectorStore(
|
20 |
+
embedding=EMBEDDING,
|
21 |
+
client= QdrantClient(
|
22 |
+
url=SETTINGS.qdrant_url,
|
23 |
+
api_key=SETTINGS.qdrant_api_key,),
|
24 |
+
|
25 |
+
collection_name='test_collection',
|
26 |
+
)
|
27 |
+
INDEX.create_collection_if_not_exists()
|
28 |
+
|
29 |
+
return SETTINGS, STORAGE, EMBEDDING, INDEX
|
30 |
+
|
31 |
+
def initialize_di_for_app() -> tuple[Settings, Storage,Embedding,Index]:
|
32 |
+
SETTINGS = Settings(_env_file='.env')
|
33 |
+
STORAGE = LocalStorage('.local_storage')
|
34 |
+
if SETTINGS.embedding_use_azure:
|
35 |
+
EMBEDDING = AzureOpenAITextAda002(
|
36 |
+
api_base=SETTINGS.embedding_azure_openai_api_base,
|
37 |
+
model_name=SETTINGS.embedding_azure_openai_model_name,
|
38 |
+
api_key=SETTINGS.embedding_azure_openai_api_key,
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
EMBEDDING = OpenAITextAda002(SETTINGS.openai_api_key)
|
42 |
+
INDEX = QDrantVectorStore(
|
43 |
+
embedding=EMBEDDING,
|
44 |
+
client= QdrantClient(
|
45 |
+
url=SETTINGS.qdrant_url,
|
46 |
+
api_key=SETTINGS.qdrant_api_key,),
|
47 |
+
collection_name='collection',
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
return SETTINGS, STORAGE, EMBEDDING, INDEX
|
embedding.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
|
3 |
+
class Embedding:
|
4 |
+
type: str|None = None
|
5 |
+
vector_size: int|None = None
|
6 |
+
def generate_embedding(self, content: str) -> list[float]:
|
7 |
+
pass
|
8 |
+
|
9 |
+
class OpenAITextAda002(Embedding):
|
10 |
+
type: str = 'text-ada-002'
|
11 |
+
vector_size: int = 1536
|
12 |
+
api_key: str = None
|
13 |
+
|
14 |
+
def __init__(self, api_key: str):
|
15 |
+
self.api_key = api_key
|
16 |
+
|
17 |
+
def generate_embedding(self, content: str) -> list[float]:
|
18 |
+
# replace newline with space
|
19 |
+
content = content.replace('\n', ' ')
|
20 |
+
# limit to 8192 characters
|
21 |
+
content = content[:6000]
|
22 |
+
return openai.Embedding.create(
|
23 |
+
api_key=self.api_key,
|
24 |
+
api_type='openai',
|
25 |
+
input = content,
|
26 |
+
model="text-embedding-ada-002"
|
27 |
+
)["data"][0]["embedding"]
|
28 |
+
|
29 |
+
class AzureOpenAITextAda002(Embedding):
|
30 |
+
type: str = 'text-ada-002'
|
31 |
+
vector_size: int = 1536
|
32 |
+
api_key: str = None
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
api_base: str,
|
37 |
+
model_name: str,
|
38 |
+
api_key: str):
|
39 |
+
self.api_key = api_key
|
40 |
+
self.model_name = model_name
|
41 |
+
self.api_key = api_key
|
42 |
+
self.api_base = api_base
|
43 |
+
|
44 |
+
def generate_embedding(self, content: str) -> list[float]:
|
45 |
+
# replace newline with space
|
46 |
+
content = content.replace('\n', ' ')
|
47 |
+
# limit to 8192 characters
|
48 |
+
content = content[:6000]
|
49 |
+
return openai.Embedding.create(
|
50 |
+
api_key=self.api_key,
|
51 |
+
api_type='azure',
|
52 |
+
api_base=self.api_base,
|
53 |
+
input = content,
|
54 |
+
engine=self.model_name,
|
55 |
+
api_version="2023-07-01-preview"
|
56 |
+
)["data"][0]["embedding"]
|
index.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from qdrant_client import QdrantClient
|
2 |
+
from qdrant_client.http.models import ScoredPoint
|
3 |
+
|
4 |
+
from embedding import Embedding
|
5 |
+
from model.document import Document
|
6 |
+
from model.record import Record
|
7 |
+
from model.user import User
|
8 |
+
from qdrant_client.http import models
|
9 |
+
import uuid
|
10 |
+
import tqdm
|
11 |
+
|
12 |
+
class Index:
|
13 |
+
type: str
|
14 |
+
|
15 |
+
def load_or_update_document(self, user: User, document: Document, progress: tqdm.tqdm = None):
|
16 |
+
pass
|
17 |
+
|
18 |
+
def remove_document(self, user: User, document: Document):
|
19 |
+
pass
|
20 |
+
|
21 |
+
def query_index(self, user: User, query: str, top_k: int = 10, threshold: float = 0.5) -> list[Record]:
|
22 |
+
pass
|
23 |
+
|
24 |
+
def query_document(self, user: User, document: Document, query: str, top_k: int = 10, threshold: float = 0.5) -> list[Record]:
|
25 |
+
pass
|
26 |
+
|
27 |
+
def contains(self, user: User, document: Document) -> bool:
|
28 |
+
pass
|
29 |
+
|
30 |
+
class QDrantVectorStore(Index):
|
31 |
+
_client: QdrantClient
|
32 |
+
_embedding: Embedding
|
33 |
+
collection_name: str
|
34 |
+
batch_size: int = 10
|
35 |
+
type: str = 'qdrant'
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
client: QdrantClient,
|
40 |
+
embedding: Embedding,
|
41 |
+
collection_name: str):
|
42 |
+
self._embedding = embedding
|
43 |
+
self.collection_name = collection_name
|
44 |
+
self._client = client
|
45 |
+
|
46 |
+
def _response_to_records(self, response: list[ScoredPoint]) -> list[Record]:
|
47 |
+
for point in response:
|
48 |
+
meta_data = point.payload['meta_data']
|
49 |
+
yield Record(
|
50 |
+
embedding=point.vector,
|
51 |
+
meta_data= meta_data,
|
52 |
+
content=point.payload['content'],
|
53 |
+
document_id=point.payload['document_id'],
|
54 |
+
timestamp=point.payload['timestamp'],
|
55 |
+
)
|
56 |
+
|
57 |
+
def create_collection(self):
|
58 |
+
self._client.recreate_collection(
|
59 |
+
collection_name=self.collection_name,
|
60 |
+
vectors_config=models.VectorParams(
|
61 |
+
size=self._embedding.vector_size,
|
62 |
+
distance=models.Distance.COSINE),
|
63 |
+
)
|
64 |
+
|
65 |
+
def if_collection_exists(self) -> bool:
|
66 |
+
try:
|
67 |
+
self._client.get_collection(self.collection_name)
|
68 |
+
return True
|
69 |
+
except Exception:
|
70 |
+
return False
|
71 |
+
|
72 |
+
def create_collection_if_not_exists(self):
|
73 |
+
if not self.if_collection_exists():
|
74 |
+
self.create_collection()
|
75 |
+
|
76 |
+
def load_or_update_document(self, user: User, document: Document, progress: tqdm.tqdm = None):
|
77 |
+
self.create_collection_if_not_exists()
|
78 |
+
|
79 |
+
if self.contains(user, document):
|
80 |
+
self.remove_document(user, document)
|
81 |
+
|
82 |
+
group_id = user.user_name
|
83 |
+
# upsert records in batch
|
84 |
+
records = document.load_records()
|
85 |
+
records = list(records)
|
86 |
+
|
87 |
+
batch_range = range(0, len(records), self.batch_size)
|
88 |
+
if progress is not None:
|
89 |
+
batch_range = progress(batch_range)
|
90 |
+
for i in batch_range:
|
91 |
+
batch = records[i:i+self.batch_size]
|
92 |
+
uuids = [str(uuid.uuid4()) for _ in batch]
|
93 |
+
payloads = [{
|
94 |
+
'content': record.content,
|
95 |
+
'meta_data': record.meta_data,
|
96 |
+
'document_id': record.document_id,
|
97 |
+
'group_id': group_id,
|
98 |
+
'timestamp': record.timestamp,
|
99 |
+
} for record in batch]
|
100 |
+
vectors = [record.embedding for record in batch]
|
101 |
+
self._client.upsert(
|
102 |
+
collection_name=self.collection_name,
|
103 |
+
points=models.Batch(
|
104 |
+
payloads=payloads,
|
105 |
+
ids=uuids,
|
106 |
+
vectors=vectors,
|
107 |
+
),
|
108 |
+
)
|
109 |
+
|
110 |
+
def remove_document(self, user: User, document: Document):
|
111 |
+
if not self.if_collection_exists():
|
112 |
+
return
|
113 |
+
|
114 |
+
document_id = document.name
|
115 |
+
self._client.delete(
|
116 |
+
collection_name=self.collection_name,
|
117 |
+
points_selector=models.FilterSelector(
|
118 |
+
filter=models.Filter(
|
119 |
+
must=[
|
120 |
+
models.FieldCondition(
|
121 |
+
key="document_id",
|
122 |
+
match=models.MatchValue(value=document_id)
|
123 |
+
),
|
124 |
+
models.FieldCondition(
|
125 |
+
key="group_id",
|
126 |
+
match=models.MatchValue(
|
127 |
+
value=user.user_name,
|
128 |
+
),
|
129 |
+
)
|
130 |
+
]
|
131 |
+
)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
|
135 |
+
def contains(self, user: User, document: Document) -> bool:
|
136 |
+
document_id = document.name
|
137 |
+
group_id = user.user_name
|
138 |
+
|
139 |
+
count = self._client.count(
|
140 |
+
collection_name=self.collection_name,
|
141 |
+
count_filter=models.Filter(
|
142 |
+
must=[
|
143 |
+
models.FieldCondition(
|
144 |
+
key="document_id",
|
145 |
+
match=models.MatchValue(value=document_id)
|
146 |
+
),
|
147 |
+
models.FieldCondition(
|
148 |
+
key="group_id",
|
149 |
+
match=models.MatchValue(
|
150 |
+
value=group_id,
|
151 |
+
),
|
152 |
+
)
|
153 |
+
]
|
154 |
+
),
|
155 |
+
exact=True,
|
156 |
+
)
|
157 |
+
|
158 |
+
return count.count > 0
|
159 |
+
|
160 |
+
def query_index(self, user: User, query: str, top_k: int = 10, threshold: float = 0.5) -> list[Record]:
|
161 |
+
if not self.if_collection_exists():
|
162 |
+
return []
|
163 |
+
|
164 |
+
response = self._client.search(
|
165 |
+
collection_name=self.collection_name,
|
166 |
+
query_vector=self._embedding.generate_embedding(query),
|
167 |
+
limit=top_k,
|
168 |
+
query_filter= models.Filter(
|
169 |
+
must=[
|
170 |
+
models.FieldCondition(
|
171 |
+
key="group_id",
|
172 |
+
match=models.MatchValue(
|
173 |
+
value=user.user_name,
|
174 |
+
),
|
175 |
+
)
|
176 |
+
]
|
177 |
+
),
|
178 |
+
score_threshold=threshold,
|
179 |
+
)
|
180 |
+
|
181 |
+
return self._response_to_records(response)
|
182 |
+
|
183 |
+
def query_document(self, user: User, document: Document, query: str, top_k: int = 10, threshold: float = 0.5) -> list[Record]:
|
184 |
+
if not self.if_collection_exists():
|
185 |
+
return []
|
186 |
+
|
187 |
+
response = self._client.search(
|
188 |
+
collection_name=self.collection_name,
|
189 |
+
query_vector=self._embedding.generate_embedding(query),
|
190 |
+
limit=top_k,
|
191 |
+
query_filter= models.Filter(
|
192 |
+
must=[
|
193 |
+
models.FieldCondition(
|
194 |
+
key="document_id",
|
195 |
+
match=models.MatchValue(value=document.name)
|
196 |
+
),
|
197 |
+
models.FieldCondition(
|
198 |
+
key="group_id",
|
199 |
+
match=models.MatchValue(value=user.user_name),
|
200 |
+
)
|
201 |
+
]
|
202 |
+
),
|
203 |
+
score_threshold=threshold,
|
204 |
+
)
|
205 |
+
|
206 |
+
return self._response_to_records(response)
|
207 |
+
|
model/document.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from .record import Record
|
3 |
+
from storage import Storage
|
4 |
+
from embedding import Embedding
|
5 |
+
import time
|
6 |
+
import json
|
7 |
+
|
8 |
+
class Document(BaseModel):
|
9 |
+
name: str
|
10 |
+
description: str | None = None
|
11 |
+
status: str = 'uploading' # uploading, processing, done, failed
|
12 |
+
url: str | None = None
|
13 |
+
|
14 |
+
_embedding: Embedding
|
15 |
+
_storage: Storage
|
16 |
+
|
17 |
+
def load_records(self) -> list[Record]:
|
18 |
+
pass
|
19 |
+
|
20 |
+
class PlainTextDocument(Document):
|
21 |
+
def __init__(
|
22 |
+
self,
|
23 |
+
embedding: Embedding,
|
24 |
+
storage: Storage,
|
25 |
+
**kwargs):
|
26 |
+
super().__init__(**kwargs)
|
27 |
+
self._embedding = embedding
|
28 |
+
self._storage = storage
|
29 |
+
|
30 |
+
def _enhance_line(self, line: str) -> str:
|
31 |
+
return line
|
32 |
+
|
33 |
+
def load_records(self) -> list[Record]:
|
34 |
+
str = self._storage.load(self.url)
|
35 |
+
lines = str.split('\n')
|
36 |
+
|
37 |
+
for i, line in enumerate(lines):
|
38 |
+
# remove empty lines
|
39 |
+
if len(line.strip()) == 0:
|
40 |
+
continue
|
41 |
+
enhance_line = self._enhance_line(line)
|
42 |
+
embedding = self._embedding.generate_embedding(enhance_line)
|
43 |
+
embedding_type = self._embedding.type
|
44 |
+
meta_data = {
|
45 |
+
'embedding_type': embedding_type,
|
46 |
+
'document_id': self.name,
|
47 |
+
'line_number': i,
|
48 |
+
'source': line,
|
49 |
+
}
|
50 |
+
|
51 |
+
yield Record(
|
52 |
+
embedding=embedding,
|
53 |
+
meta_data=meta_data,
|
54 |
+
content=line,
|
55 |
+
document_id=self.name,
|
56 |
+
timestamp=int(time.time()))
|
57 |
+
|
58 |
+
class JsonDocument(Document):
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
embedding: Embedding,
|
62 |
+
storage: Storage,
|
63 |
+
**kwargs):
|
64 |
+
super().__init__(**kwargs)
|
65 |
+
self._embedding = embedding
|
66 |
+
self._storage = storage
|
67 |
+
|
68 |
+
def load_records(self) -> list[Record]:
|
69 |
+
'''
|
70 |
+
json format:
|
71 |
+
{
|
72 |
+
'content': str // the content of the record
|
73 |
+
'meta_data': dict // the meta data of the record
|
74 |
+
}
|
75 |
+
'''
|
76 |
+
str = self._storage.load(self.url)
|
77 |
+
records = json.loads(str)
|
78 |
+
for i, item in enumerate(records):
|
79 |
+
# sleep 300ms
|
80 |
+
time.sleep(0.3)
|
81 |
+
embedding = self._embedding.generate_embedding(item['content'])
|
82 |
+
embedding_type = self._embedding.type
|
83 |
+
meta_data = {
|
84 |
+
'embedding_type': embedding_type,
|
85 |
+
'document_id': self.name,
|
86 |
+
'line_number': i,
|
87 |
+
'source': item['content'],
|
88 |
+
}
|
89 |
+
if 'meta_data' in item:
|
90 |
+
# merge meta data
|
91 |
+
meta_data = {**item['meta_data'], **meta_data}
|
92 |
+
|
93 |
+
yield Record(
|
94 |
+
embedding=embedding,
|
95 |
+
meta_data=meta_data,
|
96 |
+
content=item['content'],
|
97 |
+
document_id=self.name,
|
98 |
+
timestamp=int(time.time()))
|
model/record.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
|
3 |
+
class Record(BaseModel):
|
4 |
+
content: str
|
5 |
+
embedding: list[float] | None = None
|
6 |
+
document_id: str | None = None
|
7 |
+
meta_data: dict | None = None
|
8 |
+
timestamp: int | None = None
|
model/user.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from .document import Document
|
3 |
+
|
4 |
+
class User(BaseModel):
|
5 |
+
user_name: str
|
6 |
+
email: str
|
7 |
+
full_name: str
|
8 |
+
disabled: bool = None
|
9 |
+
|
10 |
+
documents: list[Document] = None
|
11 |
+
|
12 |
+
|
13 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi[all]==0.103.1
|
2 |
+
openai==0.28.0
|
3 |
+
python-dotenv==1.0.0
|
4 |
+
qdrant-client==1.5.2
|
setting.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic_settings import BaseSettings, SettingsConfigDict
|
2 |
+
|
3 |
+
class Settings(BaseSettings):
|
4 |
+
openai_api_key: str | None = None
|
5 |
+
azure_openai_api_key: str | None = None
|
6 |
+
qdrant_api_key: str | None = None
|
7 |
+
qdrant_url: str | None = None
|
8 |
+
qdrant_host: str | None = None
|
9 |
+
qdrant_port: int | None = None
|
10 |
+
|
11 |
+
|
12 |
+
# embedding setting
|
13 |
+
embedding_use_azure: bool = False
|
14 |
+
embedding_azure_openai_api_base: str | None = None
|
15 |
+
embedding_azure_openai_model_name: str | None = None
|
16 |
+
embedding_azure_openai_api_key: str | None = None
|
17 |
+
|
18 |
+
model_config = SettingsConfigDict(env_file='.env', env_file_encoding='utf-8')
|
setup.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# setup
|
2 |
+
from setuptools import setup
|
3 |
+
setup(
|
4 |
+
name='llm_memory',
|
5 |
+
version='1.0',
|
6 |
+
author='LittleLittleCloud',
|
7 |
+
python_requires='>=3.7, <4',
|
8 |
+
install_requires=[
|
9 |
+
'fastapi[all]==0.103.1',
|
10 |
+
'openai==0.28.0',
|
11 |
+
'python-dotenv==1.0.0',
|
12 |
+
'qdrant-client==1.5.2',
|
13 |
+
])
|
storage.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
class Storage:
|
4 |
+
def save(self, filename, data):
|
5 |
+
'''
|
6 |
+
Save or update a file
|
7 |
+
'''
|
8 |
+
pass
|
9 |
+
|
10 |
+
def delete(self, filename):
|
11 |
+
'''
|
12 |
+
Delete a file
|
13 |
+
'''
|
14 |
+
pass
|
15 |
+
|
16 |
+
def load(self, filename)->str:
|
17 |
+
'''
|
18 |
+
Load a file
|
19 |
+
'''
|
20 |
+
pass
|
21 |
+
|
22 |
+
def list(self)->list[str]:
|
23 |
+
'''
|
24 |
+
List all files
|
25 |
+
'''
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
class LocalStorage(Storage):
|
30 |
+
def __init__(self, root):
|
31 |
+
if not os.path.exists(root):
|
32 |
+
os.makedirs(root)
|
33 |
+
self.root = root
|
34 |
+
|
35 |
+
def save(self, filename, data):
|
36 |
+
with open(os.path.join(self.root, filename), 'w', encoding='utf-8') as f:
|
37 |
+
f.write(data)
|
38 |
+
|
39 |
+
def delete(self, filename):
|
40 |
+
os.remove(os.path.join(self.root, filename))
|
41 |
+
|
42 |
+
def load(self, filename):
|
43 |
+
with open(os.path.join(self.root, filename), 'r', encoding='utf-8') as f:
|
44 |
+
return f.read()
|
45 |
+
|
46 |
+
def list(self):
|
47 |
+
return os.listdir(self.root)
|
48 |
+
|