Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from audioldm import text_to_audio, build_model | |
# model_id="haoheliu/AudioLDM-S-Full" | |
# audioldm = None | |
# current_model_name = None | |
# def text2audio(text, duration, guidance_scale, random_seed, n_candidates, model_name="audioldm-m-text-ft"): | |
# global audioldm, current_model_name | |
# if audioldm is None or model_name != current_model_name: | |
# audioldm=build_model(model_name=model_name) | |
# current_model_name = model_name | |
# # print(text, length, guidance_scale) | |
# waveform = text_to_audio( | |
# latent_diffusion=audioldm, | |
# text=text, | |
# seed=random_seed, | |
# duration=duration, | |
# guidance_scale=guidance_scale, | |
# n_candidate_gen_per_text=int(n_candidates), | |
# ) # [bs, 1, samples] | |
# waveform = [ | |
# gr.make_waveform((16000, wave[0]), bg_image="bg.png") for wave in waveform | |
# ] | |
# # waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))] | |
# if(len(waveform) == 1): | |
# waveform = waveform[0] | |
# return waveform |