LittleFrog's picture
Import space before everything.
3434b8c verified
raw
history blame contribute delete
No virus
8.78 kB
import spaces
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
# from diffusers import StableDiffusionImageVariationPipeline
from inference import InferenceModel
from pytorch_lightning import seed_everything
import numpy as np
import os
import rembg
import sys
from loguru import logger
_SAMPLE_TAB_ID_ = 0
_HIGHRES_TAB_ID_ = 1
_FOREGROUND_TAB_ID_ = 2
def set_loggers(level):
logger.remove()
logger.add(sys.stderr, level=level)
def on_guide_select(evt: gr.SelectData):
logger.debug(f"You selected {evt.value} at {evt.index} from {evt.target}")
return [evt.value["image"]['path'], f"Sample {evt.index}"]
def on_input_select(evt: gr.SelectData):
logger.debug(f"You selected {evt.value} at {evt.index} from {evt.target}")
return evt.value["image"]['path']
@spaces.GPU(duration=120)
def sample_fine(
input_im,
domain="Albedo",
require_mask=False,
steps=25,
n_samples=4,
seed=0,
guid_img=None,
vert_split=2,
hor_split=2,
overlaps=2,
guidance_scale=2,
):
if require_mask:
input_im = remove_bg(input_im)
seed_everything(int(seed))
model = model_dict[domain]
inp = tform(input_im).to(device).permute(1,2,0)
guid_img = tform(guid_img).to(device).permute(1,2,0)
images = model.generation((vert_split, hor_split), overlaps, guid_img[..., :3], inp[..., :3], inp[..., 3:], dps_scale=guidance_scale, uc_score=1.0, ddim_steps=steps, batch_size=1, n_samples=1)
images["guid_iamges"] = [(guid_img.detach().cpu().numpy() * 255).astype(np.uint8)]
output = images["out_images"][0]
return [[(output, "High-res")], gr.Tabs(selected=_HIGHRES_TAB_ID_)]
def remove_bg(input_im):
output = rembg.remove(input_im, session=model_dict["remove_bg"])
return output
@spaces.GPU()
def sampling(input_im, domain="Albedo", require_mask=False,
steps=25, n_samples=4, seed=0):
seed_everything(int(seed))
model = model_dict[domain]
if require_mask:
input_im = remove_bg(input_im)
inp = tform(input_im).to(device).permute(1,2,0)
images = model.generation((1, 1), 1, None, inp[..., :3], inp[..., 3:], dps_scale=0, uc_score=1, ddim_steps=steps, batch_size=1, n_samples=n_samples)
output = [[(images["input_image"][0], "Foreground Object"), (images["input_maskes"][0], "Foreground Maks")],
[(img,f"Sample {idx}") for idx, img in enumerate(images["out_images"])],
gr.Tabs(selected=_SAMPLE_TAB_ID_),
]
return output
title = "IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination"
description = \
"""
#### Generate intrinsic images (Albedo, Specular Shading) from a single image.
##### Tips
- You can check the "Auto Mask" box if the input image requires a foreground mask. Or supply your mask with RGBA input.
- You can optionally generate a high-resolution sample if the input image is of high resolution. We split the original image into `Vertical Splits` by `Horizontal Splits` patches with some `Overlaps` in between. Due to computation constraints for the online demo, we recommend `Vertical Splits` x `Horizontal Splits` to be no more than 6 and to set 2 for `Overlaps`. The denoising steps should at least be set to 80 for high resolution samples.
"""
set_loggers("INFO")
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Loading Models...")
model_dict = {
"Albedo": InferenceModel(ckpt_path="weights/albedo",
use_ddim=True,
gpu_id=0),
"Specular": InferenceModel(ckpt_path="weights/specular",
use_ddim=True,
gpu_id=0),
"remove_bg": rembg.new_session(),
}
logger.info(f"All models Loaded!")
tform = transforms.Compose([
transforms.ToTensor()
])
examples_dir = "examples"
examples = [[os.path.join(examples_dir, img_name)] for img_name in os.listdir(examples_dir)]
# theme definition
theme = gr.Theme.from_hub("NoCrypt/miku")
theme.body_background_fill = "#FFFFFF "
theme.body_background_fill_dark = "#000000"
demo = gr.Blocks(title=title, theme=theme)
with demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + title)
gr.Markdown(description)
with gr.Column():
with gr.Row():
with gr.Column(scale=0.8):
image_input = [gr.Image(image_mode='RGBA', height=256)]
with gr.Column():
with gr.Tabs():
with gr.TabItem("Options"):
with gr.Column():
with gr.Row():
domain_box = gr.Radio([("Albedo", "Albedo"),("Specular", "Specular")],
value="Albedo",
label="Type")
with gr.Column():
gr.Markdown("### Automatic foreground segmentation")
mask_box = gr.Checkbox(False, label="Auto Mask")
options_tab = [
domain_box,
mask_box,
gr.Slider(5, 200, value=50, step=5, label="Denoising Steps (The larger the better results)"),
gr.Slider(1, 10, value=2, step=1, label="Number of Samples"),
gr.Number(75424, label="Seed", precision=0),
]
with gr.TabItem("Advanced (High-res)"):
with gr.Column():
guiding_img = gr.Image(image_mode='RGBA', label="Guiding Image", interactive=False, height=256, visible=False)
sample_idx = gr.Textbox(placeholder="Select one from the generate low-res samples", lines=1, interactive=False, label="Guiding Image")
options_advanced_tab = [
# high resolution options
guiding_img,
gr.Slider(1, 4, value=2, step=1, label="Vertical Splits"),
gr.Slider(1, 4, value=2, step=1, label="Horizontal Splits"),
gr.Slider(1, 5, value=2, step=1, label="Overlaps"),
gr.Slider(0, 5, value=3, step=1, label="Guidance Scale"),]
with gr.Column(scale=1.0):
with gr.Tabs() as res_tabs:
with gr.TabItem("Generated Samples", id=_SAMPLE_TAB_ID_):
image_output = gr.Gallery(label="Generated Samples", object_fit="contain", columns=[2], rows=[2],height=512, selected_index=0)
with gr.TabItem("High Resolution Sample", id=_HIGHRES_TAB_ID_):
image_output_high = gr.Gallery(label="High Resolution Sample", object_fit="contain", columns=[1], rows=[1],height=512, selected_index=0)
with gr.TabItem("Foreground Object", id=_FOREGROUND_TAB_ID_):
forground_output = gr.Gallery(label="Foreground Object", object_fit="contain", columns=[2], rows=[1],height=512, selected_index=0)
with gr.Row():
generate_button = gr.Button("Generate")
generate_button_fine = gr.Button("Generate High-Res")
examples_gr = gr.Examples(examples=examples, inputs=image_input,
cache_examples=False, examples_per_page=30,
label='Examples (Click one to start!)')
with gr.Row():
pass
# forground_output = gr.Gallery(label="Inputs", preview=False, columns=[2], rows=[1],height=512, selected_index=0)
# image_output = gr.Gallery(label="Generated Samples", object_fit="cover", columns=[1], rows=[6],height=512, selected_index=0)
# image_output_high = gr.Gallery(label="High Resolution Sample", object_fit="cover", columns=[1], rows=[1],height=512, selected_index=0)
generate_button.click(sampling, inputs=image_input+options_tab,
outputs=[forground_output, image_output, res_tabs])
generate_button_fine.click(sample_fine,
inputs=image_input+options_tab+options_advanced_tab,
outputs=[image_output_high, res_tabs])
image_output.select(on_guide_select, None, [guiding_img, sample_idx])
logger.info(f"Demo Initilized, Starting...")
demo.queue().launch()