IntrinsicAnything / matfusion.py
burningdust
Initial commit
d72c37e
raw
history blame
16.7 kB
import math
import numpy as np
from omegaconf import OmegaConf
from pathlib import Path
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import custom_bwd, custom_fwd
from torchvision.utils import save_image
from torchvision.ops import masks_to_boxes
from torchvision.transforms import Resize
from diffusers import DDIMScheduler, DDPMScheduler
from einops import rearrange, repeat
from tqdm import tqdm
import sys
from os import path
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
sys.path.append("./models/")
from loguru import logger
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.modules.diffusionmodules.util import extract_into_tensor
# load model
def load_model_from_config(config, ckpt, device, vram_O=False, verbose=True):
pl_sd = torch.load(ckpt, map_location='cpu')
if 'global_step' in pl_sd and verbose:
logger.info(f'Global Step: {pl_sd["global_step"]}')
sd = pl_sd['state_dict']
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0:
logger.warning('missing keys: \n', m)
if len(u) > 0:
logger.warning('unexpected keys: \n', u)
# manually load ema and delete it to save GPU memory
if model.use_ema:
logger.debug('loading EMA...')
model.model_ema.copy_to(model.model)
del model.model_ema
if vram_O:
# we don't need decoder
del model.first_stage_model.decoder
torch.cuda.empty_cache()
model.eval().to(device)
# model.first_stage_model.train = True
# model.first_stage_model.train()
for param in model.first_stage_model.parameters():
param.requires_grad = True
return model
class MateralDiffusion(nn.Module):
def __init__(self, device, fp16,
config=None,
ckpt=None, vram_O=False, t_range=[0.02, 0.98], opt=None, use_ddim=True):
super().__init__()
self.device = device
self.fp16 = fp16
self.vram_O = vram_O
self.t_range = t_range
self.opt = opt
self.config = OmegaConf.load(config)
# TODO: seems it cannot load into fp16...
self.model = load_model_from_config(self.config, ckpt, device=self.device, vram_O=vram_O, verbose=True)
# timesteps: use diffuser for convenience... hope it's alright.
self.num_train_timesteps = self.config.model.params.timesteps
self.use_ddim = use_ddim
if self.use_ddim:
self.scheduler = DDIMScheduler(
self.num_train_timesteps,
self.config.model.params.linear_start,
self.config.model.params.linear_end,
beta_schedule='scaled_linear',
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
print("Using DDIM...")
else:
self.scheduler = DDPMScheduler(
self.num_train_timesteps,
self.config.model.params.linear_start,
self.config.model.params.linear_end,
beta_schedule='scaled_linear',
clip_sample=False,
)
print("Using DDPM...")
self.min_step = int(self.num_train_timesteps * t_range[0])
self.max_step = int(self.num_train_timesteps * t_range[1])
self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
def get_input(self, x):
if len(x.shape) == 3:
x = x[..., None]
x = rearrange(x, 'b h w c -> b c h w')
x = x.to(memory_format=torch.contiguous_format).float()
return x
def center_crop(self, img, mask, return_uv=False, mask_ratio=.8, image_size=256):
margin = np.round((1 - mask_ratio) * image_size).astype(int)
resizer = Resize([np.round(image_size-margin*2).astype(int),
np.round(image_size-margin*2).astype(int)])
# img ~ batch, h, w, 3
# mask ~ batch, h, w, 3
# ensure border is 0, as grid sampler only support border or zeros padding
# But we need the one padding
batch_size = img.shape[0]
min_max_uv = masks_to_boxes(mask[..., -1] > 0.5)
min_uv, max_uv = min_max_uv[..., [1,0]].long(), (min_max_uv[..., [3,2]] + 1).long()
# fill back ground to ones
img = (img + (mask[..., -1:] <= 0.5)).clamp(0, 1)
img = rearrange(img, 'b h w c -> b c h w')
ori_size = torch.tensor(img.shape[-2:]).to(min_max_uv.device).reshape(1, 2).expand(img.shape[0], -1)
crooped_imgs = []
for batch_idx in range(batch_size):
# print(min_uv, max_uv, margin)
img_crop = img[batch_idx][:, min_uv[batch_idx, 0]:max_uv[batch_idx, 0],
min_uv[batch_idx,1]:max_uv[batch_idx, 1]]
img_crop = resizer(img_crop)
img_out = torch.ones(3, image_size, image_size).to(img.device)
img_out[:, margin:image_size-margin, margin:image_size-margin] = img_crop
crooped_imgs.append(img_out)
img_new = torch.stack(crooped_imgs, dim=0)
img_new = rearrange(img_new, 'b c h w -> b h w c')
crop_uv = torch.stack([ori_size[:, 0], ori_size[:, 1], min_uv[:, 0], min_uv[:, 1], max_uv[:, 0], max_uv[:, 1], max_uv[:, 1]*0+margin], dim=-1).float()
if return_uv:
return img_new, crop_uv
return img_new
def center_crop_aspect_ratio(self, img, mask, return_uv=False, mask_ratio=.8, image_size=256):
# img ~ batch, h, w, 3
# mask ~ batch, h, w, 3
# ensure border is 0, as grid sampler only support border or zeros padding
# But we need the one padding
boarder_mask = torch.zeros_like(mask)
boarder_mask[:, 1:-1, 1:-1] = 1
mask = mask * boarder_mask
# print(f"mask: {mask.shape}, {(mask[..., -1] > 0.5).sum}")
min_max_uv = masks_to_boxes(mask[..., -1] > 0.5)
min_uv, max_uv = min_max_uv[..., [1,0]], min_max_uv[..., [3,2]]
# fill back ground to ones
img = (img + (mask[..., -1:] <= 0.5)).clamp(0, 1)
img = rearrange(img, 'b h w c -> b c h w')
ori_size = torch.tensor(img.shape[-2:]).to(min_max_uv.device).reshape(1, 2).expand(img.shape[0], -1)
crop_length = torch.div((max_uv - min_uv), 2, rounding_mode='floor')
half_size = torch.max(crop_length, dim=-1, keepdim=True)[0]
center_uv = min_uv + crop_length
# generate grid
target_size = image_size
grid_x, grid_y = torch.meshgrid(torch.arange(0, target_size, 1, device=min_max_uv.device), \
torch.arange(0, target_size, 1, device=min_max_uv.device), \
indexing='ij')
normalized_xy = torch.stack([(grid_x) / (target_size - 1), grid_y / (target_size - 1)], dim=-1) # [0,1]
normalized_xy = (normalized_xy - 0.5) / mask_ratio + 0.5
normalized_xy = normalized_xy[None].expand(img.shape[0], -1, -1, -1)
ori_crop_size = 2 * half_size + 1
xy_scale = (ori_crop_size-1) / (ori_size - 1)
normalized_xy = normalized_xy * xy_scale.reshape(-1, 1, 1, 2)[..., [0,1]]
xy_shift = (center_uv - half_size) / (ori_size - 1)
normalized_xy = normalized_xy + xy_shift.reshape(-1, 1, 1, 2)[..., [0,1]]
normalized_xy = normalized_xy * 2 - 1 # [-1,1]
# normalized_xy = normalized_xy / mask_ratio
img_new = F.grid_sample(img, normalized_xy[..., [1,0]], padding_mode='border', align_corners=True)
crop_uv = torch.stack([ori_size[:, 0], ori_size[:, 1], half_size[..., 0]*0.0 + mask_ratio, half_size[..., 0], center_uv[:, 0], center_uv[:, 1]], dim=-1).float()
img_new = rearrange(img_new, 'b c h w -> b h w c')
if return_uv:
return img_new, crop_uv
return img_new
def restore_crop(self, img, img_ori, crop_idx):
ori_size, min_uv, max_uv, margin = crop_idx[:, :2].long(), crop_idx[:, 2:4].long(), crop_idx[:, 4:6].long(), crop_idx[0, 6].long().item()
batch_size = img.shape[0]
all_images = []
for batch_idx in range(batch_size):
img_out = torch.ones(3, ori_size[batch_idx][0], ori_size[batch_idx][1]).to(img.device)
cropped_size = max_uv[batch_idx] - min_uv[batch_idx]
resizer = Resize([cropped_size[0], cropped_size[1]])
net_size = img[batch_idx].shape[-1]
img_crop = resizer(img[batch_idx][:, margin:net_size-margin, margin:net_size-margin])
img_out[:, min_uv[batch_idx, 0]:max_uv[batch_idx, 0],
min_uv[batch_idx,1]:max_uv[batch_idx, 1]] = img_crop
all_images.append(img_out)
all_images = torch.stack(all_images, dim=0)
all_images = rearrange(all_images, 'b c h w -> b h w c')
return all_images
def restore_crop_aspect_ratio(self, img, img_ori, crop_idx):
ori_size, mask_ratio, half_size, center_uv = crop_idx[:, :2].long(), crop_idx[:, 2:3], crop_idx[:, 3:4].long(), crop_idx[:, 4:].long()
img[:, :, 0, :] = 1
img[:, :, -1, :] = 1
img[:, :, :, 0] = 1
img[:, :, :, -1] = 1
ori_crop_size = 2*half_size + 1
grid_x, grid_y = torch.meshgrid(torch.arange(0, ori_size[0, 0].item(), 1, device=img.device), \
torch.arange(0, ori_size[0, 1].item(), 1, device=img.device), \
indexing='ij')
normalized_xy = torch.stack([grid_x, grid_y], dim=-1)[None].expand(img.shape[0], -1, -1, -1) - \
(center_uv - half_size).reshape(-1, 1, 1, 2)[..., [0,1]]
normalized_xy = normalized_xy / (ori_crop_size-1).reshape(-1, 1, 1, 1)
normalized_xy = (2*normalized_xy - 1) * mask_ratio.reshape(-1, 1, 1, 1)
sample_start = (center_uv - half_size)
# print(normalized_xy[0][sample_start[0][0], sample_start[0][1]], mask_ratio)
img_out = F.grid_sample(img, normalized_xy[..., [1,0]], padding_mode='border', align_corners=True)
img_out = rearrange(img_out, 'b c h w -> b h w c')
return img_out
def _image2diffusion(self, embeddings, pred_rgb, mask, image_size=256):
# pred_rgb: tensor [1, 3, H, W] in [0, 1]
# assert pred_rgb.w
assert len(pred_rgb.shape) == 4, f"except 4 dim tensor, got: {pred_rgb.shape}"
cond_img = embeddings["cond_img"]
cond_img = self.center_crop(cond_img, mask, mask_ratio=1.0, image_size=image_size)
pred_rgb_256, crop_idx_all = self.center_crop(pred_rgb, mask, return_uv=True, mask_ratio=1.0, image_size=image_size)
# print(f"pred_rgb_256: {pred_rgb_256.min()} {pred_rgb_256.max()} {pred_rgb_256.shape} {cond_img.shape}")
mask_img = self.center_crop(1 - mask.expand(-1, -1, -1, 3), mask, mask_ratio=1.0, image_size=image_size)
xc = self.get_input(cond_img)
pred_rgb_256 = self.get_input(pred_rgb_256)
return pred_rgb_256, crop_idx_all, xc
def _get_condition(self, xc, with_uncondition=False):
# To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%.
# z.shape: [8, 4, 64, 64]; c.shape: [8, 1, 768]
# print('=========== xc shape ===========', xc.shape)
# print(xc.shape, xc.min(), xc.max(), self.model.use_clip_embdding)
xc = xc * 2 - 1
cond = {}
clip_emb = self.model.get_learned_conditioning(xc if self.model.use_clip_embdding else [""]).detach()
c_concat = self.model.encode_first_stage((xc.to(self.device))).mode().detach()
# print(clip_emb.shape, clip_emb.min(), clip_emb.max(), self.model.use_clip_embdding)
if with_uncondition:
cond['c_crossattn'] = [torch.cat([torch.zeros_like(clip_emb).to(self.device), clip_emb], dim=0)]
cond['c_concat'] = [torch.cat([torch.zeros_like(c_concat).to(self.device), c_concat], dim=0)]
else:
cond['c_crossattn'] = [clip_emb]
cond['c_concat'] = [c_concat]
return cond
@torch.no_grad()
def __call__(self, embeddings, pred_rgb, mask, guidance_scale=3, dps_scale=0.2, as_latent=False, grad_scale=1, save_guidance_path:Path=None,
ddim_steps=200, ddim_eta=1, operator=None):
# todo: The upsacle is currectly hard-coded
upscale = 1
# with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
pred_rgb_256, crop_idx_all, xc = self._image2diffusion(embeddings, pred_rgb, mask, image_size=256*upscale)
cond = self._get_condition(xc, with_uncondition=True)
assert pred_rgb_256.shape[-1] == pred_rgb_256.shape[-2], f"Expect image of square size, get {pred_rgb.shape}"
latents = torch.randn_like(self.encode_imgs(pred_rgb_256))
if self.use_ddim:
self.scheduler.set_timesteps(ddim_steps)
else:
self.scheduler.set_timesteps(self.num_train_timesteps)
intermidates = []
for i, t in tqdm(enumerate(self.scheduler.timesteps)):
x_in = torch.cat([latents] * 2)
t_in = torch.cat([t.view(1).expand(latents.shape[0])] * 2).to(self.device)
noise_pred = self.model.apply_model(x_in, t_in, cond)
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
# dps
if dps_scale > 0:
with torch.enable_grad():
t_batch = torch.randint(self.min_step, self.max_step + 1, (latents.shape[0],), dtype=torch.long, device=self.device) * 0 + t
x_hat_latents = self.model.predict_start_from_noise(latents.requires_grad_(True), t_batch, noise_pred)
x_hat = self.decode_latents(x_hat_latents)
x_hat = operator.forward(x_hat)
norm = torch.linalg.norm((pred_rgb_256-x_hat).reshape(pred_rgb_256.shape[0], -1), dim=-1)
guidance_score = torch.autograd.grad(norm.sum(), latents, retain_graph=True)[0]
if (not save_guidance_path is None) and i % (len(self.scheduler.timesteps)//20) == 0:
x_t = self.decode_latents(latents)
intermidates.append(torch.cat([x_hat, x_t, pred_rgb_256, pred_rgb_256-x_hat], dim=-2).detach().cpu())
# print("before", noise_pred[0, 2, 10, 16:22], noise_pred.shape, dps_scale)
logger.debug(f"Guidance loss: {norm}")
noise_pred = noise_pred + dps_scale * guidance_score
if self.use_ddim:
latents = self.scheduler.step(noise_pred, t, latents, eta=ddim_eta)['prev_sample']
else:
latents = self.scheduler.step(noise_pred.clone().detach(), t, latents)['prev_sample']
if dps_scale > 0:
del x_hat
del guidance_score
del noise_pred
del x_hat_latents
del norm
imgs = self.decode_latents(latents)
viz_images = torch.cat([pred_rgb_256, imgs],dim=-1)[:1]
if not save_guidance_path is None and len(intermidates) > 0:
save_image(viz_images, save_guidance_path)
viz_images = torch.cat(intermidates,dim=-1)[:1]
save_image(viz_images, save_guidance_path+"all.jpg")
# transform back to original images
img_ori_size = self.restore_crop(imgs, pred_rgb, crop_idx_all)
if not save_guidance_path is None:
img_ori_size_save = rearrange(img_ori_size, 'b h w c -> b c h w')[:1]
save_image(img_ori_size_save, save_guidance_path+"_out.jpg")
return img_ori_size
def decode_latents(self, latents):
# zs: [B, 4, 32, 32] Latent space image
# with self.model.ema_scope():
imgs = self.model.decode_first_stage(latents)
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs # [B, 3, 256, 256] RGB space image
def encode_imgs(self, imgs):
# imgs: [B, 3, 256, 256] RGB space image
# with self.model.ema_scope():
imgs = imgs * 2 - 1
# latents = torch.cat([self.model.get_first_stage_encoding(self.model.encode_first_stage(img.unsqueeze(0))) for img in imgs], dim=0)
latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs))
return latents # [B, 4, 32, 32] Latent space image