|
import os |
|
import numpy as np |
|
import PIL |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
|
|
|
|
class LSUNBase(Dataset): |
|
def __init__(self, |
|
txt_file, |
|
data_root, |
|
size=None, |
|
interpolation="bicubic", |
|
flip_p=0.5 |
|
): |
|
self.data_paths = txt_file |
|
self.data_root = data_root |
|
with open(self.data_paths, "r") as f: |
|
self.image_paths = f.read().splitlines() |
|
self._length = len(self.image_paths) |
|
self.labels = { |
|
"relative_file_path_": [l for l in self.image_paths], |
|
"file_path_": [os.path.join(self.data_root, l) |
|
for l in self.image_paths], |
|
} |
|
|
|
self.size = size |
|
self.interpolation = {"linear": PIL.Image.LINEAR, |
|
"bilinear": PIL.Image.BILINEAR, |
|
"bicubic": PIL.Image.BICUBIC, |
|
"lanczos": PIL.Image.LANCZOS, |
|
}[interpolation] |
|
self.flip = transforms.RandomHorizontalFlip(p=flip_p) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, i): |
|
example = dict((k, self.labels[k][i]) for k in self.labels) |
|
image = Image.open(example["file_path_"]) |
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
|
|
|
|
img = np.array(image).astype(np.uint8) |
|
crop = min(img.shape[0], img.shape[1]) |
|
h, w, = img.shape[0], img.shape[1] |
|
img = img[(h - crop) // 2:(h + crop) // 2, |
|
(w - crop) // 2:(w + crop) // 2] |
|
|
|
image = Image.fromarray(img) |
|
if self.size is not None: |
|
image = image.resize((self.size, self.size), resample=self.interpolation) |
|
|
|
image = self.flip(image) |
|
image = np.array(image).astype(np.uint8) |
|
example["image"] = (image / 127.5 - 1.0).astype(np.float32) |
|
return example |
|
|
|
|
|
class LSUNChurchesTrain(LSUNBase): |
|
def __init__(self, **kwargs): |
|
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs) |
|
|
|
|
|
class LSUNChurchesValidation(LSUNBase): |
|
def __init__(self, flip_p=0., **kwargs): |
|
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches", |
|
flip_p=flip_p, **kwargs) |
|
|
|
|
|
class LSUNBedroomsTrain(LSUNBase): |
|
def __init__(self, **kwargs): |
|
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs) |
|
|
|
|
|
class LSUNBedroomsValidation(LSUNBase): |
|
def __init__(self, flip_p=0.0, **kwargs): |
|
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms", |
|
flip_p=flip_p, **kwargs) |
|
|
|
|
|
class LSUNCatsTrain(LSUNBase): |
|
def __init__(self, **kwargs): |
|
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs) |
|
|
|
|
|
class LSUNCatsValidation(LSUNBase): |
|
def __init__(self, flip_p=0., **kwargs): |
|
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats", |
|
flip_p=flip_p, **kwargs) |
|
|