|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from einops import repeat |
|
|
|
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init |
|
from taming.modules.losses.lpips import LPIPS |
|
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss |
|
|
|
|
|
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights): |
|
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0] |
|
loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3]) |
|
loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3]) |
|
loss_real = (weights * loss_real).sum() / weights.sum() |
|
loss_fake = (weights * loss_fake).sum() / weights.sum() |
|
d_loss = 0.5 * (loss_real + loss_fake) |
|
return d_loss |
|
|
|
def adopt_weight(weight, global_step, threshold=0, value=0.): |
|
if global_step < threshold: |
|
weight = value |
|
return weight |
|
|
|
|
|
def measure_perplexity(predicted_indices, n_embed): |
|
|
|
|
|
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed) |
|
avg_probs = encodings.mean(0) |
|
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() |
|
cluster_use = torch.sum(avg_probs > 0) |
|
return perplexity, cluster_use |
|
|
|
def l1(x, y): |
|
return torch.abs(x-y) |
|
|
|
|
|
def l2(x, y): |
|
return torch.pow((x-y), 2) |
|
|
|
|
|
class VQLPIPSWithDiscriminator(nn.Module): |
|
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, |
|
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, |
|
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, |
|
disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips", |
|
pixel_loss="l1"): |
|
super().__init__() |
|
assert disc_loss in ["hinge", "vanilla"] |
|
assert perceptual_loss in ["lpips", "clips", "dists"] |
|
assert pixel_loss in ["l1", "l2"] |
|
self.codebook_weight = codebook_weight |
|
self.pixel_weight = pixelloss_weight |
|
if perceptual_loss == "lpips": |
|
print(f"{self.__class__.__name__}: Running with LPIPS.") |
|
self.perceptual_loss = LPIPS().eval() |
|
else: |
|
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<") |
|
self.perceptual_weight = perceptual_weight |
|
|
|
if pixel_loss == "l1": |
|
self.pixel_loss = l1 |
|
else: |
|
self.pixel_loss = l2 |
|
|
|
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels, |
|
n_layers=disc_num_layers, |
|
use_actnorm=use_actnorm, |
|
ndf=disc_ndf |
|
).apply(weights_init) |
|
self.discriminator_iter_start = disc_start |
|
if disc_loss == "hinge": |
|
self.disc_loss = hinge_d_loss |
|
elif disc_loss == "vanilla": |
|
self.disc_loss = vanilla_d_loss |
|
else: |
|
raise ValueError(f"Unknown GAN loss '{disc_loss}'.") |
|
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.") |
|
self.disc_factor = disc_factor |
|
self.discriminator_weight = disc_weight |
|
self.disc_conditional = disc_conditional |
|
self.n_classes = n_classes |
|
|
|
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): |
|
if last_layer is not None: |
|
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] |
|
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] |
|
else: |
|
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] |
|
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] |
|
|
|
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) |
|
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() |
|
d_weight = d_weight * self.discriminator_weight |
|
return d_weight |
|
|
|
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx, |
|
global_step, last_layer=None, cond=None, split="train", predicted_indices=None): |
|
if not exists(codebook_loss): |
|
codebook_loss = torch.tensor([0.]).to(inputs.device) |
|
|
|
rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous()) |
|
if self.perceptual_weight > 0: |
|
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) |
|
rec_loss = rec_loss + self.perceptual_weight * p_loss |
|
else: |
|
p_loss = torch.tensor([0.0]) |
|
|
|
nll_loss = rec_loss |
|
|
|
nll_loss = torch.mean(nll_loss) |
|
|
|
|
|
if optimizer_idx == 0: |
|
|
|
if cond is None: |
|
assert not self.disc_conditional |
|
logits_fake = self.discriminator(reconstructions.contiguous()) |
|
else: |
|
assert self.disc_conditional |
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) |
|
g_loss = -torch.mean(logits_fake) |
|
|
|
try: |
|
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) |
|
except RuntimeError: |
|
assert not self.training |
|
d_weight = torch.tensor(0.0) |
|
|
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) |
|
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean() |
|
|
|
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), |
|
"{}/quant_loss".format(split): codebook_loss.detach().mean(), |
|
"{}/nll_loss".format(split): nll_loss.detach().mean(), |
|
"{}/rec_loss".format(split): rec_loss.detach().mean(), |
|
"{}/p_loss".format(split): p_loss.detach().mean(), |
|
"{}/d_weight".format(split): d_weight.detach(), |
|
"{}/disc_factor".format(split): torch.tensor(disc_factor), |
|
"{}/g_loss".format(split): g_loss.detach().mean(), |
|
} |
|
if predicted_indices is not None: |
|
assert self.n_classes is not None |
|
with torch.no_grad(): |
|
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes) |
|
log[f"{split}/perplexity"] = perplexity |
|
log[f"{split}/cluster_usage"] = cluster_usage |
|
return loss, log |
|
|
|
if optimizer_idx == 1: |
|
|
|
if cond is None: |
|
logits_real = self.discriminator(inputs.contiguous().detach()) |
|
logits_fake = self.discriminator(reconstructions.contiguous().detach()) |
|
else: |
|
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) |
|
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) |
|
|
|
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) |
|
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) |
|
|
|
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), |
|
"{}/logits_real".format(split): logits_real.detach().mean(), |
|
"{}/logits_fake".format(split): logits_fake.detach().mean() |
|
} |
|
return d_loss, log |
|
|