Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py | |
from dataclasses import dataclass | |
from typing import Optional | |
from einops import rearrange | |
import torch | |
from torch import nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.models.attention import Attention | |
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero | |
from diffusers.models.embeddings import Timesteps, TimestepEmbedding | |
from unet_utils import FFAttention | |
class SpatioTempTransformer3DModelOutput(BaseOutput): | |
sample: torch.Tensor | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
class FFSpatioAudioTempTransformer3DModel(ModelMixin, ConfigMixin): | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
audio_cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
upcast_attention: bool = False, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
# Define input layers | |
self.in_channels = in_channels | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
if use_linear_projection: | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
# Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
audio_cross_attention_dim=audio_cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
if use_linear_projection: | |
self.proj_out = nn.Linear(in_channels, inner_dim) | |
else: | |
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
audio_encoder_hidden_states=None, | |
audio_attention_mask=None, | |
timestep=None, | |
class_labels=None, | |
cross_attention_kwargs=None, | |
return_dict: bool = True | |
): | |
# Input | |
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
video_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
encoder_hidden_states = rearrange(encoder_hidden_states, 'b f n c -> (b f) n c') | |
audio_encoder_hidden_states = rearrange(audio_encoder_hidden_states, 'b f n c -> (b f) n c') | |
if audio_attention_mask is not None: | |
audio_attention_mask = rearrange(audio_attention_mask, 'b f n -> (b f) 1 n') | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
if not self.use_linear_projection: | |
hidden_states = self.proj_in(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
else: | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
hidden_states = self.proj_in(hidden_states) | |
# Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
audio_encoder_hidden_states=audio_encoder_hidden_states, | |
audio_attention_mask=audio_attention_mask, | |
timestep=timestep, | |
video_length=video_length, | |
cross_attention_kwargs=cross_attention_kwargs, | |
class_labels=class_labels | |
) | |
# Output | |
if not self.use_linear_projection: | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
) | |
hidden_states = self.proj_out(hidden_states) | |
else: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
) | |
output = hidden_states + residual | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
if not return_dict: | |
return (output,) | |
return SpatioTempTransformer3DModelOutput(sample=output) | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
audio_cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. SC-Cross-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.attn1 = FFAttention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Audio Conditioned Cross-Attn | |
self.norm_audio = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
self.attn_audio = Attention( | |
query_dim=dim, | |
cross_attention_dim=audio_cross_attention_dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
# 3. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 4. Temp-Attn | |
self.pos_proj_temp = Timesteps(dim, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.pos_embedding_temp = TimestepEmbedding( | |
dim, | |
dim, | |
act_fn="silu", | |
post_act_fn=None, | |
cond_proj_dim=None, | |
) | |
self.attn_temp = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) | |
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
self.norm_temp = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
# 5. Feed-forward | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
audio_encoder_hidden_states=None, | |
audio_attention_mask=None, | |
timestep=None, | |
video_length=None, | |
cross_attention_kwargs=None, | |
class_labels=None, | |
): | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 1. Self-Attention | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
video_length=video_length, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
# 2. Audio Cross-Attention | |
if self.attn_audio is not None: | |
norm_hidden_states = ( | |
self.norm_audio(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_audio(hidden_states) | |
) | |
attn_output = self.attn_audio( | |
norm_hidden_states, | |
encoder_hidden_states=audio_encoder_hidden_states, | |
attention_mask=audio_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
# TODO (Birch-San): Here we should prepare the encoder_attention mask correctly | |
# prepare attention mask here | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Temporal-Attention | |
# Add positional embedding | |
device = hidden_states.device | |
dtype = hidden_states.dtype | |
pos_embed = self.pos_proj_temp(torch.arange(video_length).long()).to(device=device, dtype=dtype) # (f c) | |
pos_embed = self.pos_embedding_temp(pos_embed).unsqueeze(0) # (1, f, c) | |
seq_len = hidden_states.shape[1] | |
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) | |
norm_hidden_states = ( | |
self.norm_temp(hidden_states + pos_embed, timestep) if self.use_ada_layer_norm else self.norm_temp( | |
hidden_states + pos_embed) | |
) | |
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=seq_len) | |
# 4. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.ff(norm_hidden_states) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |