Lin
commited on
Commit
•
b85384a
1
Parent(s):
f8c3dcc
Updated app
Browse files
app.py
CHANGED
@@ -1,15 +1,37 @@
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
def sepia(input_img):
|
5 |
-
sepia_filter = np.array([
|
6 |
-
[0.393, 0.769, 0.189],
|
7 |
-
[0.349, 0.686, 0.168],
|
8 |
-
[0.272, 0.534, 0.131]
|
9 |
-
])
|
10 |
-
sepia_img = input_img.dot(sepia_filter.T)
|
11 |
-
sepia_img /= sepia_img.max()
|
12 |
-
return sepia_img
|
13 |
-
|
14 |
-
demo = gr.Interface(sepia, gr.Image(), "image")
|
15 |
demo.launch()
|
|
|
1 |
import numpy as np
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
|
8 |
+
|
9 |
+
# def sepia(input_img):
|
10 |
+
# sepia_filter = np.array([
|
11 |
+
# [0.393, 0.769, 0.189],
|
12 |
+
# [0.349, 0.686, 0.168],
|
13 |
+
# [0.272, 0.534, 0.131]
|
14 |
+
# ])
|
15 |
+
# sepia_img = input_img.dot(sepia_filter.T)
|
16 |
+
# sepia_img /= sepia_img.max()
|
17 |
+
# return sepia_img
|
18 |
+
|
19 |
+
# demo = gr.Interface(sepia, gr.Image(), "image")
|
20 |
+
|
21 |
+
# Download human-readable labels for ImageNet.
|
22 |
+
response = requests.get("https://git.io/JJkYN")
|
23 |
+
labels = response.text.split("\n")
|
24 |
+
|
25 |
+
def predict(inp):
|
26 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
27 |
+
with torch.no_grad():
|
28 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
29 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
30 |
+
return confidences
|
31 |
+
|
32 |
+
gr.Interface(fn=predict,
|
33 |
+
inputs=gr.Image(type="pil"),
|
34 |
+
outputs=gr.Label(num_top_classes=3),
|
35 |
+
examples=["lion.jpg", "cheetah.jpg"]).launch()
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
demo.launch()
|