yappeizhen's picture
feat: customisations
803a411
raw
history blame
4.86 kB
import gradio as gr
import whisper
from transformers import pipeline
model = whisper.load_model("base")
sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions")
def analyze_sentiment(text):
results = sentiment_analysis(text)
sentiment_results = {result['label']: result['score'] for result in results}
return sentiment_results
def get_sentiment_emoji(sentiment):
# Define the emojis corresponding to each sentiment
emoji_mapping = {
"disappointment": "๐Ÿ˜ž",
"sadness": "๐Ÿ˜ข",
"annoyance": "๐Ÿ˜ ",
"neutral": "๐Ÿ˜",
"disapproval": "๐Ÿ‘Ž",
"realization": "๐Ÿ˜ฎ",
"nervousness": "๐Ÿ˜ฌ",
"approval": "๐Ÿ‘",
"joy": "๐Ÿ˜„",
"anger": "๐Ÿ˜ก",
"embarrassment": "๐Ÿ˜ณ",
"caring": "๐Ÿค—",
"remorse": "๐Ÿ˜”",
"disgust": "๐Ÿคข",
"grief": "๐Ÿ˜ฅ",
"confusion": "๐Ÿ˜•",
"relief": "๐Ÿ˜Œ",
"desire": "๐Ÿ˜",
"admiration": "๐Ÿ˜Œ",
"optimism": "๐Ÿ˜Š",
"fear": "๐Ÿ˜จ",
"love": "โค๏ธ",
"excitement": "๐ŸŽ‰",
"curiosity": "๐Ÿค”",
"amusement": "๐Ÿ˜„",
"surprise": "๐Ÿ˜ฒ",
"gratitude": "๐Ÿ™",
"pride": "๐Ÿฆ"
}
return emoji_mapping.get(sentiment, "")
def display_sentiment_results(sentiment_results, option):
sentiment_text = ""
for sentiment, score in sentiment_results.items():
emoji = get_sentiment_emoji(sentiment)
if option == "Sentiment Only":
sentiment_text += f"{sentiment} {emoji}\n"
elif option == "Sentiment + Score":
sentiment_text += f"{sentiment} {emoji}: {score}\n"
return sentiment_text
def inference(audio, sentiment_option):
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
lang = max(probs, key=probs.get)
options = whisper.DecodingOptions(fp16=False)
result = whisper.decode(model, mel, options)
sentiment_results = analyze_sentiment(result.text)
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
return lang.upper(), result.text, sentiment_output
title = """<h1 align="center">โ˜• Lim Kopi ๐Ÿ’ฌ</h1>"""
image_path = "coffee_logo.jpg"
description = """
๐Ÿ’ป This MVP shows how we can use Whisper to conduct audio sentiment analysis on voice recordings of customer service agents. Whisper is a general speech recognition model built by OpenAI. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br>
โš™๏ธ MVP Components:<br>
<br>
&nbsp;&nbsp;&nbsp;&nbsp; - Real-time multilingual speech recognition<br>
&nbsp;&nbsp;&nbsp;&nbsp; - Language identification<br>
&nbsp;&nbsp;&nbsp;&nbsp; - Sentiment analysis of the transcriptions<br>
<br>
๐ŸŽฏ The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores, so customer service agents can receive feedback on the overall call quality and customer receptiveness.<br>
<br>
๐Ÿ˜ƒ The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br>
<br>
โœ… The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br>
<br>
โ“ Use the microphone for real-time speech recognition.<br>
<br>
โšก๏ธ The model will transcribe the audio for record-keeping, and perform sentiment analysis on the transcribed text.<br>
"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
.svelte-1mwvhlq {
display: none !important;
}
"""
block = gr.Blocks(title="Lim Kopi Call Center Service", css=custom_css)
with block:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.Image(image_path, elem_id="banner-image", show_label=False)
with gr.Column():
gr.HTML(description)
with gr.Group():
with gr.Box():
sentiment_option = gr.Radio(
choices=["Sentiment Only", "Sentiment + Score"],
label="Select an option",
)
audio = gr.Audio(
source="microphone",
type="filepath"
)
with gr.Box():
btn = gr.Button("Transcribe")
lang_str = gr.Textbox(label="Language")
text = gr.Textbox(label="Transcription")
sentiment_output = gr.Textbox(label="Sentiment Analysis Results")
btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output])
block.launch()