Depth-Anything / app.py
hysts's picture
hysts HF staff
Cache examples
392f705
raw
history blame
3.36 kB
import gradio as gr
import cv2
import numpy as np
import os
from PIL import Image
import spaces
import torch
import torch.nn.functional as F
from torchvision.transforms import Compose
import tempfile
from gradio_imageslider import ImageSlider
from depth_anything.dpt import DPT_DINOv2
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model = DPT_DINOv2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).to(DEVICE).eval()
model.load_state_dict(torch.load('checkpoints/depth_anything_vitl14.pth'))
title = "# Depth Anything"
description = """Official demo for **Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data**.
Please refer to our [paper](), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
@spaces.GPU
@torch.no_grad()
def predict_depth(model, image):
return model(image)
with gr.Blocks(css=css) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Depth Prediction demo")
with gr.Row():
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0)
raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)")
submit = gr.Button("Submit")
def on_submit(image):
original_image = image.copy()
h, w = image.shape[:2]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
image = transform({'image': image})['image']
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE)
depth = predict_depth(model, image)
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0]
raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16'))
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
raw_depth.save(tmp.name)
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
return [(original_image, colored_depth), tmp.name]
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, raw_file])
example_files = os.listdir('examples')
example_files.sort()
example_files = [os.path.join('examples', filename) for filename in example_files]
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, raw_file], fn=on_submit, cache_examples=True)
if __name__ == '__main__':
demo.queue().launch()