Spaces:
Running
on
A100
Running
on
A100
change seed and analytics
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_toggle import Toggle
|
3 |
import torch
|
4 |
from huggingface_hub import snapshot_download
|
|
|
5 |
|
6 |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
7 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
@@ -20,6 +22,9 @@ import tempfile
|
|
20 |
import os
|
21 |
import gc
|
22 |
from openai import OpenAI
|
|
|
|
|
|
|
23 |
|
24 |
# Load Hugging Face token if needed
|
25 |
hf_token = os.getenv("HF_TOKEN")
|
@@ -36,9 +41,7 @@ with open(system_prompt_i2v_path, "r") as f:
|
|
36 |
# Set model download directory within Hugging Face Spaces
|
37 |
model_path = "asset"
|
38 |
if not os.path.exists(model_path):
|
39 |
-
snapshot_download(
|
40 |
-
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token
|
41 |
-
)
|
42 |
|
43 |
# Global variables to load components
|
44 |
vae_dir = Path(model_path) / "vae"
|
@@ -47,6 +50,94 @@ scheduler_dir = Path(model_path) / "scheduler"
|
|
47 |
|
48 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def load_vae(vae_dir):
|
52 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
@@ -185,12 +276,8 @@ vae = load_vae(vae_dir)
|
|
185 |
unet = load_unet(unet_dir)
|
186 |
scheduler = load_scheduler(scheduler_dir)
|
187 |
patchifier = SymmetricPatchifier(patch_size=1)
|
188 |
-
text_encoder = T5EncoderModel.from_pretrained(
|
189 |
-
|
190 |
-
).to(device)
|
191 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
192 |
-
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer"
|
193 |
-
)
|
194 |
|
195 |
pipeline = XoraVideoPipeline(
|
196 |
transformer=unet,
|
@@ -205,9 +292,10 @@ pipeline = XoraVideoPipeline(
|
|
205 |
def generate_video_from_text(
|
206 |
prompt="",
|
207 |
enhance_prompt_toggle=False,
|
|
|
208 |
negative_prompt="",
|
209 |
frame_rate=25,
|
210 |
-
seed=
|
211 |
num_inference_steps=30,
|
212 |
guidance_scale=3,
|
213 |
height=512,
|
@@ -221,6 +309,21 @@ def generate_video_from_text(
|
|
221 |
duration=5,
|
222 |
)
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="t2v")
|
225 |
|
226 |
sample = {
|
@@ -269,9 +372,7 @@ def generate_video_from_text(
|
|
269 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
270 |
video_np = (video_np * 255).astype(np.uint8)
|
271 |
height, width = video_np.shape[1:3]
|
272 |
-
out = cv2.VideoWriter(
|
273 |
-
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
|
274 |
-
)
|
275 |
for frame in video_np[..., ::-1]:
|
276 |
out.write(frame)
|
277 |
out.release()
|
@@ -286,9 +387,10 @@ def generate_video_from_image(
|
|
286 |
image_path,
|
287 |
prompt="",
|
288 |
enhance_prompt_toggle=False,
|
|
|
289 |
negative_prompt="",
|
290 |
frame_rate=25,
|
291 |
-
seed=
|
292 |
num_inference_steps=30,
|
293 |
guidance_scale=3,
|
294 |
height=512,
|
@@ -310,9 +412,28 @@ def generate_video_from_image(
|
|
310 |
if not image_path:
|
311 |
raise gr.Error("Please provide an input image.", duration=5)
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="i2v")
|
318 |
|
@@ -353,9 +474,7 @@ def generate_video_from_image(
|
|
353 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
354 |
video_np = (video_np * 255).astype(np.uint8)
|
355 |
height, width = video_np.shape[1:3]
|
356 |
-
out = cv2.VideoWriter(
|
357 |
-
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)
|
358 |
-
)
|
359 |
for frame in video_np[..., ::-1]:
|
360 |
out.write(frame)
|
361 |
out.release()
|
@@ -374,15 +493,9 @@ def generate_video_from_image(
|
|
374 |
|
375 |
def create_advanced_options():
|
376 |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
377 |
-
seed = gr.Slider(
|
378 |
-
|
379 |
-
)
|
380 |
-
inference_steps = gr.Slider(
|
381 |
-
label="4.2 Inference Steps", minimum=1, maximum=50, step=1, value=30
|
382 |
-
)
|
383 |
-
guidance_scale = gr.Slider(
|
384 |
-
label="4.3 Guidance Scale", minimum=1.0, maximum=5.0, step=0.1, value=3.0
|
385 |
-
)
|
386 |
|
387 |
height_slider = gr.Slider(
|
388 |
label="4.4 Height",
|
@@ -451,9 +564,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
451 |
</div>
|
452 |
"""
|
453 |
)
|
454 |
-
with gr.Accordion(
|
455 |
-
" π Tips for Best Results", open=False, elem_id="instructions-accordion"
|
456 |
-
):
|
457 |
gr.Markdown(
|
458 |
"""
|
459 |
π Prompt Engineering
|
@@ -491,6 +602,12 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
491 |
value="A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.",
|
492 |
lines=5,
|
493 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
txt2vid_enhance_toggle = Toggle(
|
495 |
label="Enhance Prompt",
|
496 |
value=False,
|
@@ -566,6 +683,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
566 |
value="A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.",
|
567 |
lines=5,
|
568 |
)
|
|
|
|
|
|
|
|
|
|
|
569 |
img2vid_enhance_toggle = Toggle(
|
570 |
label="Enhance Prompt",
|
571 |
value=False,
|
@@ -593,9 +715,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
593 |
)
|
594 |
|
595 |
img2vid_advanced = create_advanced_options()
|
596 |
-
img2vid_generate = gr.Button(
|
597 |
-
"Step 6: Generate Video", variant="primary", size="lg"
|
598 |
-
)
|
599 |
|
600 |
with gr.Column():
|
601 |
img2vid_output = gr.Video(label="Generated Output")
|
@@ -632,15 +752,14 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
632 |
)
|
633 |
|
634 |
# [Previous event handlers remain the same]
|
635 |
-
txt2vid_preset.change(
|
636 |
-
fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[3:]
|
637 |
-
)
|
638 |
|
639 |
txt2vid_generate.click(
|
640 |
fn=generate_video_from_text,
|
641 |
inputs=[
|
642 |
txt2vid_prompt,
|
643 |
txt2vid_enhance_toggle,
|
|
|
644 |
txt2vid_negative_prompt,
|
645 |
txt2vid_frame_rate,
|
646 |
*txt2vid_advanced,
|
@@ -651,9 +770,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
651 |
queue=True,
|
652 |
)
|
653 |
|
654 |
-
img2vid_preset.change(
|
655 |
-
fn=preset_changed, inputs=[img2vid_preset], outputs=img2vid_advanced[3:]
|
656 |
-
)
|
657 |
|
658 |
img2vid_generate.click(
|
659 |
fn=generate_video_from_image,
|
@@ -661,6 +778,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
661 |
img2vid_image,
|
662 |
img2vid_prompt,
|
663 |
img2vid_enhance_toggle,
|
|
|
664 |
img2vid_negative_prompt,
|
665 |
img2vid_frame_rate,
|
666 |
*img2vid_advanced,
|
@@ -672,6 +790,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
672 |
)
|
673 |
|
674 |
if __name__ == "__main__":
|
675 |
-
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
|
676 |
-
share=True, show_api=False
|
677 |
-
)
|
|
|
1 |
+
from functools import lru_cache
|
2 |
import gradio as gr
|
3 |
from gradio_toggle import Toggle
|
4 |
import torch
|
5 |
from huggingface_hub import snapshot_download
|
6 |
+
from transformers import CLIPProcessor, CLIPModel
|
7 |
|
8 |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
|
9 |
from xora.models.transformers.transformer3d import Transformer3DModel
|
|
|
22 |
import os
|
23 |
import gc
|
24 |
from openai import OpenAI
|
25 |
+
import csv
|
26 |
+
from datetime import datetime
|
27 |
+
|
28 |
|
29 |
# Load Hugging Face token if needed
|
30 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
41 |
# Set model download directory within Hugging Face Spaces
|
42 |
model_path = "asset"
|
43 |
if not os.path.exists(model_path):
|
44 |
+
snapshot_download("Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token)
|
|
|
|
|
45 |
|
46 |
# Global variables to load components
|
47 |
vae_dir = Path(model_path) / "vae"
|
|
|
50 |
|
51 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
|
53 |
+
DATA_DIR = "/data"
|
54 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
55 |
+
LOG_FILE_PATH = os.path.join("/data", "user_requests.csv")
|
56 |
+
|
57 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
58 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
|
59 |
+
|
60 |
+
|
61 |
+
if not os.path.exists(LOG_FILE_PATH):
|
62 |
+
with open(LOG_FILE_PATH, "w", newline="") as f:
|
63 |
+
writer = csv.writer(f)
|
64 |
+
writer.writerow(
|
65 |
+
[
|
66 |
+
"timestamp",
|
67 |
+
"request_type",
|
68 |
+
"prompt",
|
69 |
+
"negative_prompt",
|
70 |
+
"height",
|
71 |
+
"width",
|
72 |
+
"num_frames",
|
73 |
+
"frame_rate",
|
74 |
+
"seed",
|
75 |
+
"num_inference_steps",
|
76 |
+
"guidance_scale",
|
77 |
+
"is_enhanced",
|
78 |
+
"clip_embedding",
|
79 |
+
"original_resolution",
|
80 |
+
]
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
@lru_cache(maxsize=128)
|
85 |
+
def log_request(
|
86 |
+
request_type,
|
87 |
+
prompt,
|
88 |
+
negative_prompt,
|
89 |
+
height,
|
90 |
+
width,
|
91 |
+
num_frames,
|
92 |
+
frame_rate,
|
93 |
+
seed,
|
94 |
+
num_inference_steps,
|
95 |
+
guidance_scale,
|
96 |
+
is_enhanced,
|
97 |
+
clip_embedding=None,
|
98 |
+
original_resolution=None,
|
99 |
+
):
|
100 |
+
"""Log the user's request to a CSV file."""
|
101 |
+
timestamp = datetime.now().isoformat()
|
102 |
+
with open(LOG_FILE_PATH, "a", newline="") as f:
|
103 |
+
try:
|
104 |
+
writer = csv.writer(f)
|
105 |
+
writer.writerow(
|
106 |
+
[
|
107 |
+
timestamp,
|
108 |
+
request_type,
|
109 |
+
prompt,
|
110 |
+
negative_prompt,
|
111 |
+
height,
|
112 |
+
width,
|
113 |
+
num_frames,
|
114 |
+
frame_rate,
|
115 |
+
seed,
|
116 |
+
num_inference_steps,
|
117 |
+
guidance_scale,
|
118 |
+
is_enhanced,
|
119 |
+
clip_embedding,
|
120 |
+
original_resolution,
|
121 |
+
]
|
122 |
+
)
|
123 |
+
except Exception as e:
|
124 |
+
print(f"Error logging request: {e}")
|
125 |
+
|
126 |
+
|
127 |
+
def compute_clip_embedding(text=None, image=None):
|
128 |
+
"""
|
129 |
+
Compute CLIP embedding for a given text or image.
|
130 |
+
Args:
|
131 |
+
text (str): Input text prompt.
|
132 |
+
image (PIL.Image): Input image.
|
133 |
+
Returns:
|
134 |
+
list: CLIP embedding as a list of floats.
|
135 |
+
"""
|
136 |
+
inputs = clip_processor(text=text, images=image, return_tensors="pt", padding=True)
|
137 |
+
outputs = clip_model.get_text_features(**inputs) if text else clip_model.get_image_features(**inputs)
|
138 |
+
embedding = outputs.detach().cpu().numpy().flatten().tolist()
|
139 |
+
return embedding
|
140 |
+
|
141 |
|
142 |
def load_vae(vae_dir):
|
143 |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
|
|
|
276 |
unet = load_unet(unet_dir)
|
277 |
scheduler = load_scheduler(scheduler_dir)
|
278 |
patchifier = SymmetricPatchifier(patch_size=1)
|
279 |
+
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(device)
|
280 |
+
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
|
|
|
|
|
|
|
|
|
281 |
|
282 |
pipeline = XoraVideoPipeline(
|
283 |
transformer=unet,
|
|
|
292 |
def generate_video_from_text(
|
293 |
prompt="",
|
294 |
enhance_prompt_toggle=False,
|
295 |
+
txt2vid_analytics_toggle=True,
|
296 |
negative_prompt="",
|
297 |
frame_rate=25,
|
298 |
+
seed=646373,
|
299 |
num_inference_steps=30,
|
300 |
guidance_scale=3,
|
301 |
height=512,
|
|
|
309 |
duration=5,
|
310 |
)
|
311 |
|
312 |
+
if txt2vid_analytics_toggle:
|
313 |
+
log_request(
|
314 |
+
"txt2vid",
|
315 |
+
prompt,
|
316 |
+
negative_prompt,
|
317 |
+
height,
|
318 |
+
width,
|
319 |
+
num_frames,
|
320 |
+
frame_rate,
|
321 |
+
seed,
|
322 |
+
num_inference_steps,
|
323 |
+
guidance_scale,
|
324 |
+
enhance_prompt_toggle,
|
325 |
+
)
|
326 |
+
|
327 |
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="t2v")
|
328 |
|
329 |
sample = {
|
|
|
372 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
373 |
video_np = (video_np * 255).astype(np.uint8)
|
374 |
height, width = video_np.shape[1:3]
|
375 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
|
|
|
|
|
376 |
for frame in video_np[..., ::-1]:
|
377 |
out.write(frame)
|
378 |
out.release()
|
|
|
387 |
image_path,
|
388 |
prompt="",
|
389 |
enhance_prompt_toggle=False,
|
390 |
+
img2vid_analytics_toggle=True,
|
391 |
negative_prompt="",
|
392 |
frame_rate=25,
|
393 |
+
seed=646373,
|
394 |
num_inference_steps=30,
|
395 |
guidance_scale=3,
|
396 |
height=512,
|
|
|
412 |
if not image_path:
|
413 |
raise gr.Error("Please provide an input image.", duration=5)
|
414 |
|
415 |
+
if img2vid_analytics_toggle:
|
416 |
+
with Image.open(image_path) as img:
|
417 |
+
original_resolution = f"{img.width}x{img.height}" # Format as "widthxheight"
|
418 |
+
clip_embedding = compute_clip_embedding(image=img)
|
419 |
+
|
420 |
+
log_request(
|
421 |
+
"img2vid",
|
422 |
+
prompt,
|
423 |
+
negative_prompt,
|
424 |
+
height,
|
425 |
+
width,
|
426 |
+
num_frames,
|
427 |
+
frame_rate,
|
428 |
+
seed,
|
429 |
+
num_inference_steps,
|
430 |
+
guidance_scale,
|
431 |
+
enhance_prompt_toggle,
|
432 |
+
json.dumps(clip_embedding),
|
433 |
+
original_resolution,
|
434 |
+
)
|
435 |
+
|
436 |
+
media_items = load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
|
437 |
|
438 |
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle, type="i2v")
|
439 |
|
|
|
474 |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
|
475 |
video_np = (video_np * 255).astype(np.uint8)
|
476 |
height, width = video_np.shape[1:3]
|
477 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
|
|
|
|
|
478 |
for frame in video_np[..., ::-1]:
|
479 |
out.write(frame)
|
480 |
out.release()
|
|
|
493 |
|
494 |
def create_advanced_options():
|
495 |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
|
496 |
+
seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
|
497 |
+
inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=1, maximum=50, step=1, value=30)
|
498 |
+
guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=5.0, step=0.1, value=3.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
|
500 |
height_slider = gr.Slider(
|
501 |
label="4.4 Height",
|
|
|
564 |
</div>
|
565 |
"""
|
566 |
)
|
567 |
+
with gr.Accordion(" π Tips for Best Results", open=False, elem_id="instructions-accordion"):
|
|
|
|
|
568 |
gr.Markdown(
|
569 |
"""
|
570 |
π Prompt Engineering
|
|
|
602 |
value="A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.",
|
603 |
lines=5,
|
604 |
)
|
605 |
+
txt2vid_analytics_toggle = Toggle(
|
606 |
+
label="I agree to share my usage data anonymously to help improve the model features.",
|
607 |
+
value=True,
|
608 |
+
interactive=True,
|
609 |
+
)
|
610 |
+
|
611 |
txt2vid_enhance_toggle = Toggle(
|
612 |
label="Enhance Prompt",
|
613 |
value=False,
|
|
|
683 |
value="A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.",
|
684 |
lines=5,
|
685 |
)
|
686 |
+
img2vid_analytics_toggle = Toggle(
|
687 |
+
label="I agree to share my usage data anonymously to help improve the model features.",
|
688 |
+
value=True,
|
689 |
+
interactive=True,
|
690 |
+
)
|
691 |
img2vid_enhance_toggle = Toggle(
|
692 |
label="Enhance Prompt",
|
693 |
value=False,
|
|
|
715 |
)
|
716 |
|
717 |
img2vid_advanced = create_advanced_options()
|
718 |
+
img2vid_generate = gr.Button("Step 6: Generate Video", variant="primary", size="lg")
|
|
|
|
|
719 |
|
720 |
with gr.Column():
|
721 |
img2vid_output = gr.Video(label="Generated Output")
|
|
|
752 |
)
|
753 |
|
754 |
# [Previous event handlers remain the same]
|
755 |
+
txt2vid_preset.change(fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[3:])
|
|
|
|
|
756 |
|
757 |
txt2vid_generate.click(
|
758 |
fn=generate_video_from_text,
|
759 |
inputs=[
|
760 |
txt2vid_prompt,
|
761 |
txt2vid_enhance_toggle,
|
762 |
+
txt2vid_analytics_toggle,
|
763 |
txt2vid_negative_prompt,
|
764 |
txt2vid_frame_rate,
|
765 |
*txt2vid_advanced,
|
|
|
770 |
queue=True,
|
771 |
)
|
772 |
|
773 |
+
img2vid_preset.change(fn=preset_changed, inputs=[img2vid_preset], outputs=img2vid_advanced[3:])
|
|
|
|
|
774 |
|
775 |
img2vid_generate.click(
|
776 |
fn=generate_video_from_image,
|
|
|
778 |
img2vid_image,
|
779 |
img2vid_prompt,
|
780 |
img2vid_enhance_toggle,
|
781 |
+
img2vid_analytics_toggle,
|
782 |
img2vid_negative_prompt,
|
783 |
img2vid_frame_rate,
|
784 |
*img2vid_advanced,
|
|
|
790 |
)
|
791 |
|
792 |
if __name__ == "__main__":
|
793 |
+
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False)
|
|
|
|