Sapir's picture
wip
ebaff66
raw
history blame
2.24 kB
import torch
from vae.causal_video_autoencoder import CausalVideoAutoencoder
from transformer.transformer3d import Trasformer3D
from patchify.symmetric import SymmetricPatchifier
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
vae_path = "/opt/models/checkpoints/vae_training/causal_vvae_32x32x8_420m_cont_32/step_2296000"
dtype = torch.float32
vae = CausalVideoAutoencoder.from_pretrained(
pretrained_model_name_or_path=vae_local_path,
revision=False,
torch_dtype=torch.bfloat16,
load_in_8bit=False,
)
transformer_config_path = "/opt/txt2img/txt2img/config/transformer3d/xora_v1.2-L.json"
transformer_config = Transformer3D.load_config(config_local_path)
transformer = Transformer3D.from_config(config)
transformer_local_path = "/opt/models/logs/v1.2-vae-mf-medHR-mr-cvae-nl/ckpt/01760000/model.p"
transformer_ckpt_state_dict = torch.load(transformer_local_path)
transformer.load_state_dict(transformer_ckpt_state_dict, True)
unet = transformer
scheduler_config_path = "/opt/txt2img/txt2img/config/scheduler/RF_SD3_shifted.json"
scheduler_config = RectifiedFlowScheduler.load_config(config_local_path)
scheduler = RectifiedFlowScheduler.from_config(config)
patchifier = SymmetricPatchifier(patch_size=1)
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path,
safety_checker=None,
revision=None,
torch_dtype=dtype,
**submodel_dict,
)
num_inference_steps=20
num_images_per_prompt=2
guidance_scale=3
height=512
width=768
num_frames=57
frame_rate=25
sample = {
"prompt_embeds": None, # (B, L, E)
'prompt_attention_mask': None, # (B , L)
'negative_prompt_embeds': None,' # (B, L, E)
'negative_prompt': None,
'negative_prompt_attention_mask': None # (B , L)
}
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images_per_prompt,
guidance_scale=guidance_scale,
generator=None,
output_type="pt",
callback_on_step_end=None,
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_noramlize=True,
).images