Spaces:
Running
on
A100
Running
on
A100
from abc import ABC, abstractmethod | |
from typing import Tuple | |
import torch | |
from diffusers.configuration_utils import ConfigMixin | |
from einops import rearrange | |
from torch import Tensor | |
from xora.utils.torch_utils import append_dims | |
class Patchifier(ConfigMixin, ABC): | |
def __init__(self, patch_size: int): | |
super().__init__() | |
self._patch_size = (1, patch_size, patch_size) | |
def patchify(self, latents: Tensor, frame_rates: Tensor, scale_grid: bool) -> Tuple[Tensor, Tensor]: | |
pass | |
def unpatchify( | |
self, latents: Tensor, output_height: int, output_width: int, output_num_frames: int, out_channels: int | |
) -> Tuple[Tensor, Tensor]: | |
pass | |
def patch_size(self): | |
return self._patch_size | |
def get_grid(self, orig_num_frames, orig_height, orig_width, batch_size, scale_grid, device): | |
f = orig_num_frames // self._patch_size[0] | |
h = orig_height // self._patch_size[1] | |
w = orig_width // self._patch_size[2] | |
grid_h = torch.arange(h, dtype=torch.float32, device=device) | |
grid_w = torch.arange(w, dtype=torch.float32, device=device) | |
grid_f = torch.arange(f, dtype=torch.float32, device=device) | |
grid = torch.meshgrid(grid_f, grid_h, grid_w) | |
grid = torch.stack(grid, dim=0) | |
grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) | |
if scale_grid is not None: | |
for i in range(3): | |
if isinstance(scale_grid[i], Tensor): | |
scale = append_dims(scale_grid[i], grid.ndim - 1) | |
else: | |
scale = scale_grid[i] | |
grid[:, i, ...] = grid[:, i, ...] * scale * self._patch_size[i] | |
grid = rearrange(grid, "b c f h w -> b c (f h w)", b=batch_size) | |
return grid | |
def pixart_alpha_patchify( | |
latents: Tensor, | |
patch_size: int, | |
) -> Tuple[Tensor, Tensor]: | |
latents = rearrange( | |
latents, | |
"b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)", | |
p1=patch_size[0], | |
p2=patch_size[1], | |
p3=patch_size[2], | |
) | |
return latents | |
class SymmetricPatchifier(Patchifier): | |
def patchify( | |
self, | |
latents: Tensor, | |
) -> Tuple[Tensor, Tensor]: | |
return pixart_alpha_patchify(latents, self._patch_size) | |
def unpatchify( | |
self, latents: Tensor, output_height: int, output_width: int, output_num_frames: int, out_channels: int | |
) -> Tuple[Tensor, Tensor]: | |
output_height = output_height // self._patch_size[1] | |
output_width = output_width // self._patch_size[2] | |
latents = rearrange( | |
latents, | |
"b (f h w) (c p q) -> b c f (h p) (w q) ", | |
f=output_num_frames, | |
h=output_height, | |
w=output_width, | |
p=self._patch_size[1], | |
q=self._patch_size[2], | |
) | |
return latents | |