Spaces:
Running
on
A100
Running
on
A100
import gradio as gr | |
import torch | |
from huggingface_hub import snapshot_download | |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder | |
from xora.models.transformers.transformer3d import Transformer3DModel | |
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier | |
from xora.schedulers.rf import RectifiedFlowScheduler | |
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline | |
from transformers import T5EncoderModel, T5Tokenizer | |
from xora.utils.conditioning_method import ConditioningMethod | |
from pathlib import Path | |
import safetensors.torch | |
import json | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import tempfile | |
import os | |
# Load Hugging Face token if needed | |
hf_token = os.getenv("HF_TOKEN") | |
# Set model download directory within Hugging Face Spaces | |
model_path = "asset" | |
if not os.path.exists(model_path): | |
snapshot_download( | |
"Lightricks/LTX-Video", local_dir=model_path, repo_type="model", token=hf_token | |
) | |
# Global variables to load components | |
vae_dir = Path(model_path) / "vae" | |
unet_dir = Path(model_path) / "unet" | |
scheduler_dir = Path(model_path) / "scheduler" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def load_vae(vae_dir): | |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors" | |
vae_config_path = vae_dir / "config.json" | |
with open(vae_config_path, "r") as f: | |
vae_config = json.load(f) | |
vae = CausalVideoAutoencoder.from_config(vae_config) | |
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) | |
vae.load_state_dict(vae_state_dict) | |
return vae.cuda().to(torch.bfloat16) | |
def load_unet(unet_dir): | |
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors" | |
unet_config_path = unet_dir / "config.json" | |
transformer_config = Transformer3DModel.load_config(unet_config_path) | |
transformer = Transformer3DModel.from_config(transformer_config) | |
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) | |
transformer.load_state_dict(unet_state_dict, strict=True) | |
return transformer.to(device) | |
def load_scheduler(scheduler_dir): | |
scheduler_config_path = scheduler_dir / "scheduler_config.json" | |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) | |
return RectifiedFlowScheduler.from_config(scheduler_config) | |
# Helper function for image processing | |
def center_crop_and_resize(frame, target_height, target_width): | |
h, w, _ = frame.shape | |
aspect_ratio_target = target_width / target_height | |
aspect_ratio_frame = w / h | |
if aspect_ratio_frame > aspect_ratio_target: | |
new_width = int(h * aspect_ratio_target) | |
x_start = (w - new_width) // 2 | |
frame_cropped = frame[:, x_start : x_start + new_width] | |
else: | |
new_height = int(w / aspect_ratio_target) | |
y_start = (h - new_height) // 2 | |
frame_cropped = frame[y_start : y_start + new_height, :] | |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height)) | |
return frame_resized | |
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768): | |
image = Image.open(image_path).convert("RGB") | |
image_np = np.array(image) | |
frame_resized = center_crop_and_resize(image_np, target_height, target_width) | |
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float() | |
frame_tensor = (frame_tensor / 127.5) - 1.0 | |
return frame_tensor.unsqueeze(0).unsqueeze(2) | |
# Preset options for resolution and frame configuration | |
preset_options = [ | |
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41}, | |
{"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49}, | |
{"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57}, | |
{"label": "992x608, 65 frames", "width": 992, "height": 608, "num_frames": 65}, | |
{"label": "896x608, 73 frames", "width": 896, "height": 608, "num_frames": 73}, | |
{"label": "896x544, 81 frames", "width": 896, "height": 544, "num_frames": 81}, | |
{"label": "832x544, 89 frames", "width": 832, "height": 544, "num_frames": 89}, | |
{"label": "800x512, 97 frames", "width": 800, "height": 512, "num_frames": 97}, | |
{"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97}, | |
{"label": "800x480, 105 frames", "width": 800, "height": 480, "num_frames": 105}, | |
{"label": "736x480, 113 frames", "width": 736, "height": 480, "num_frames": 113}, | |
{"label": "704x480, 121 frames", "width": 704, "height": 480, "num_frames": 121}, | |
{"label": "704x448, 129 frames", "width": 704, "height": 448, "num_frames": 129}, | |
{"label": "672x448, 137 frames", "width": 672, "height": 448, "num_frames": 137}, | |
{"label": "640x416, 153 frames", "width": 640, "height": 416, "num_frames": 153}, | |
{"label": "672x384, 161 frames", "width": 672, "height": 384, "num_frames": 161}, | |
{"label": "640x384, 169 frames", "width": 640, "height": 384, "num_frames": 169}, | |
{"label": "608x384, 177 frames", "width": 608, "height": 384, "num_frames": 177}, | |
{"label": "576x384, 185 frames", "width": 576, "height": 384, "num_frames": 185}, | |
{"label": "608x352, 193 frames", "width": 608, "height": 352, "num_frames": 193}, | |
{"label": "576x352, 201 frames", "width": 576, "height": 352, "num_frames": 201}, | |
{"label": "544x352, 209 frames", "width": 544, "height": 352, "num_frames": 209}, | |
{"label": "512x352, 225 frames", "width": 512, "height": 352, "num_frames": 225}, | |
{"label": "512x352, 233 frames", "width": 512, "height": 352, "num_frames": 233}, | |
{"label": "544x320, 241 frames", "width": 544, "height": 320, "num_frames": 241}, | |
{"label": "512x320, 249 frames", "width": 512, "height": 320, "num_frames": 249}, | |
{"label": "512x320, 257 frames", "width": 512, "height": 320, "num_frames": 257}, | |
{"label": "Custom", "height": None, "width": None, "num_frames": None}, | |
] | |
# Function to toggle visibility of sliders based on preset selection | |
def preset_changed(preset): | |
if preset != "Custom": | |
selected = next(item for item in preset_options if item["label"] == preset) | |
return ( | |
selected["height"], | |
selected["width"], | |
selected["num_frames"], | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
) | |
else: | |
return ( | |
None, | |
None, | |
None, | |
gr.update(visible=True), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
) | |
# Load models | |
vae = load_vae(vae_dir) | |
unet = load_unet(unet_dir) | |
scheduler = load_scheduler(scheduler_dir) | |
patchifier = SymmetricPatchifier(patch_size=1) | |
text_encoder = T5EncoderModel.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder" | |
).to(device) | |
tokenizer = T5Tokenizer.from_pretrained( | |
"PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer" | |
) | |
pipeline = XoraVideoPipeline( | |
transformer=unet, | |
patchifier=patchifier, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
vae=vae, | |
).to(device) | |
def generate_video_from_text( | |
prompt="", | |
negative_prompt="", | |
seed=171198, | |
num_inference_steps=40, | |
guidance_scale=3, | |
height=512, | |
width=768, | |
num_frames=121, | |
frame_rate=25, | |
progress=gr.Progress(), | |
): | |
if len(prompt.strip()) < 50: | |
raise gr.Error( | |
"Prompt must be at least 50 characters long. Please provide more details for the best results.", | |
duration=5, | |
) | |
sample = { | |
"prompt": prompt, | |
"prompt_attention_mask": None, | |
"negative_prompt": negative_prompt, | |
"negative_prompt_attention_mask": None, | |
"media_items": None, | |
} | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
def gradio_progress_callback(self, step, timestep, kwargs): | |
progress((step + 1) / num_inference_steps) | |
images = pipeline( | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=1, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
output_type="pt", | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
frame_rate=frame_rate, | |
**sample, | |
is_video=True, | |
vae_per_channel_normalize=True, | |
conditioning_method=ConditioningMethod.FIRST_FRAME, | |
mixed_precision=True, | |
callback_on_step_end=gradio_progress_callback, | |
).images | |
output_path = tempfile.mktemp(suffix=".mp4") | |
print(images.shape) | |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy() | |
video_np = (video_np * 255).astype(np.uint8) | |
height, width = video_np.shape[1:3] | |
out = cv2.VideoWriter( | |
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height) | |
) | |
for frame in video_np[..., ::-1]: | |
out.write(frame) | |
out.release() | |
return output_path | |
def generate_video_from_image( | |
image_path, | |
prompt="", | |
negative_prompt="", | |
seed=171198, | |
num_inference_steps=40, | |
guidance_scale=3, | |
height=512, | |
width=768, | |
num_frames=121, | |
frame_rate=25, | |
progress=gr.Progress(), | |
): | |
if len(prompt.strip()) < 50: | |
raise gr.Error( | |
"Prompt must be at least 50 characters long. Please provide more details for the best results.", | |
duration=5, | |
) | |
if not image_path: | |
raise gr.Error("Please provide an input image.", duration=5) | |
media_items = load_image_to_tensor_with_resize(image_path, height, width).to(device) | |
sample = { | |
"prompt": prompt, | |
"prompt_attention_mask": None, | |
"negative_prompt": negative_prompt, | |
"negative_prompt_attention_mask": None, | |
"media_items": media_items, | |
} | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
def gradio_progress_callback(self, step, timestep, kwargs): | |
progress((step + 1) / num_inference_steps) | |
images = pipeline( | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=1, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
output_type="pt", | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
frame_rate=frame_rate, | |
**sample, | |
is_video=True, | |
vae_per_channel_normalize=True, | |
conditioning_method=ConditioningMethod.FIRST_FRAME, | |
mixed_precision=True, | |
callback_on_step_end=gradio_progress_callback, | |
).images | |
output_path = tempfile.mktemp(suffix=".mp4") | |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy() | |
video_np = (video_np * 255).astype(np.uint8) | |
height, width = video_np.shape[1:3] | |
out = cv2.VideoWriter( | |
output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height) | |
) | |
for frame in video_np[..., ::-1]: | |
out.write(frame) | |
out.release() | |
return output_path | |
def create_advanced_options(): | |
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False): | |
seed = gr.Slider( | |
label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=171198 | |
) | |
inference_steps = gr.Slider( | |
label="4.2 Inference Steps", minimum=1, maximum=100, step=1, value=40 | |
) | |
guidance_scale = gr.Slider( | |
label="4.3 Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=3.0 | |
) | |
height_slider = gr.Slider( | |
label="4.4 Height", | |
minimum=256, | |
maximum=1024, | |
step=64, | |
value=704, | |
visible=False, | |
) | |
width_slider = gr.Slider( | |
label="4.5 Width", | |
minimum=256, | |
maximum=1024, | |
step=64, | |
value=1216, | |
visible=False, | |
) | |
num_frames_slider = gr.Slider( | |
label="4.5 Number of Frames", | |
minimum=1, | |
maximum=200, | |
step=1, | |
value=41, | |
visible=False, | |
) | |
frame_rate = gr.Slider( | |
label="4.7 Frame Rate", | |
minimum=1, | |
maximum=60, | |
step=1, | |
value=25, | |
visible=False, | |
) | |
return [ | |
seed, | |
inference_steps, | |
guidance_scale, | |
height_slider, | |
width_slider, | |
num_frames_slider, | |
frame_rate, | |
] | |
# Define the Gradio interface with tabs | |
with gr.Blocks(theme=gr.themes.Soft()) as iface: | |
with gr.Row(elem_id="title-row"): | |
gr.Markdown( | |
""" | |
<div style="text-align: center; margin-bottom: 1em"> | |
<h1 style="font-size: 2.5em; font-weight: 600; margin: 0.5em 0;">Video Generation with LTX Video</h1> | |
</div> | |
""" | |
) | |
with gr.Accordion( | |
" ๐ Tips for Best Results", open=False, elem_id="instructions-accordion" | |
): | |
gr.Markdown( | |
""" | |
๐ Prompt Engineering | |
When writing prompts, focus on detailed, chronological descriptions of actions and scenes. Include specific movements, appearances, camera angles, and environmental details - all in a single flowing paragraph. Start directly with the action, and keep descriptions literal and precise. Think like a cinematographer describing a shot list. Keep within 200 words. | |
For best results, build your prompts using this structure: | |
- Start with main action in a single sentence | |
- Add specific details about movements and gestures | |
- Describe character/object appearances precisely | |
- Include background and environment details | |
- Specify camera angles and movements | |
- Describe lighting and colors | |
- Note any changes or sudden events | |
See examples for more inspiration. | |
๐ฎ Parameter Guide | |
- Resolution Preset: Higher resolutions for detailed scenes, lower for faster generation and simpler scenes | |
- Seed: Save seed values to recreate specific styles or compositions you like | |
- Guidance Scale: Higher values (5-7) for accurate prompt following, lower values (3-5) for more creative freedom | |
- Inference Steps: More steps (40+) for quality, fewer steps (20-30) for speed | |
""" | |
) | |
with gr.Tabs(): | |
# Text to Video Tab | |
with gr.TabItem("Text to Video"): | |
with gr.Row(): | |
with gr.Column(): | |
txt2vid_prompt = gr.Textbox( | |
label="Step 1: Enter Your Prompt", | |
placeholder="Describe the video you want to generate (minimum 50 characters)...", | |
value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery and distant mountains. The sky is clear with a few wispy clouds, and the sunlight glistens on the motorcycle as it speeds along.", | |
lines=5, | |
) | |
txt2vid_negative_prompt = gr.Textbox( | |
label="Step 2: Enter Negative Prompt (Optional)", | |
placeholder="Describe what you don't want in the video...", | |
value="worst quality, inconsistent motion...", | |
lines=2, | |
) | |
txt2vid_preset = gr.Dropdown( | |
choices=[p["label"] for p in preset_options], | |
value="1216x704, 41 frames", | |
label="Step 3: Choose Resolution Preset", | |
) | |
txt2vid_advanced = create_advanced_options() | |
txt2vid_generate = gr.Button( | |
"Step 5: Generate Video", variant="primary", size="lg" | |
) | |
with gr.Column(): | |
txt2vid_output = gr.Video(label="Step 6: Generated Output") | |
# Image to Video Tab | |
with gr.TabItem("Image to Video"): | |
with gr.Row(): | |
with gr.Column(): | |
img2vid_image = gr.Image( | |
type="filepath", | |
label="Step 1: Upload Input Image", | |
elem_id="image_upload", | |
) | |
img2vid_prompt = gr.Textbox( | |
label="Step 2: Enter Your Prompt", | |
placeholder="Describe how you want to animate the image (minimum 50 characters)...", | |
value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery...", | |
lines=5, | |
) | |
img2vid_negative_prompt = gr.Textbox( | |
label="Step 3: Enter Negative Prompt (Optional)", | |
placeholder="Describe what you don't want in the video...", | |
value="worst quality, inconsistent motion...", | |
lines=2, | |
) | |
img2vid_preset = gr.Dropdown( | |
choices=[p["label"] for p in preset_options], | |
value="1216x704, 41 frames", | |
label="Step 4: Choose Resolution Preset", | |
) | |
img2vid_advanced = create_advanced_options() | |
img2vid_generate = gr.Button( | |
"Step 6: Generate Video", variant="primary", size="lg" | |
) | |
with gr.Column(): | |
img2vid_output = gr.Video(label="Step 7: Generated Output") | |
# [Previous event handlers remain the same] | |
txt2vid_preset.change( | |
fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[4:] | |
) | |
txt2vid_generate.click( | |
fn=generate_video_from_text, | |
inputs=[txt2vid_prompt, txt2vid_negative_prompt, *txt2vid_advanced], | |
outputs=txt2vid_output, | |
) | |
img2vid_preset.change( | |
fn=preset_changed, inputs=[img2vid_preset], outputs=img2vid_advanced[4:] | |
) | |
img2vid_generate.click( | |
fn=generate_video_from_image, | |
inputs=[ | |
img2vid_image, | |
img2vid_prompt, | |
img2vid_negative_prompt, | |
*img2vid_advanced, | |
], | |
outputs=img2vid_output, | |
) | |
iface.launch(share=True) | |