LifeHelperAI commited on
Commit
3dd6986
·
verified ·
1 Parent(s): 9eedb88

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +22 -70
  2. requirements.txt +2 -0
app.py CHANGED
@@ -1,70 +1,22 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
18
-
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- messages.extend(history)
22
-
23
- messages.append({"role": "user", "content": message})
24
-
25
- response = ""
26
-
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- chatbot = gr.ChatInterface(
47
- respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
- )
62
-
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
-
68
-
69
- if __name__ == "__main__":
70
- demo.launch()
 
1
+ import streamlit as st
2
+ import requests
3
+ import os
4
+
5
+ # Hugging Face API details
6
+ API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1"
7
+ headers = {"Authorization": f"Bearer {os.environ['HF_TOKEN']}"} # read from secret
8
+
9
+ def query(payload):
10
+ response = requests.post(API_URL, headers=headers, json=payload)
11
+ return response.json()
12
+
13
+ # Streamlit UI
14
+ st.title("🚀 Mistral-7B AI Chat App")
15
+
16
+ user_input = st.text_input("Ask me anything:")
17
+
18
+ if st.button("Send"):
19
+ if user_input:
20
+ output = query({"inputs": user_input})
21
+ st.write("### 🤖 AI Response:")
22
+ st.write(output[0]["generated_text"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ streamlit
2
+ requests