Arnold / app.py
Libroru's picture
Upload 23 files
33128bc verified
import os, gradio, torch, openai, os, fitz, asyncio, qdrant_client, time, math
from theme import CustomTheme
from llama_index import (
SimpleDirectoryReader,
StorageContext,
)
from llama_index.multi_modal_llms import OpenAIMultiModal
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.indices.multi_modal.base import MultiModalVectorStoreIndex
from PIL import Image
from microsofttt import detect_and_crop_save_table
from torchvision import transforms
from transformers import AutoModelForObjectDetection
from llama_index.vector_stores.qdrant import QdrantVectorStore
device = "cuda" if torch.cuda.is_available() else "cpu"
openai.api_key = os.environ["OPENAI_API_KEY"]
image_documents: None
openai_mm_llm: None
bot_examples = [
"Wie kannst du mir helfen?",
"Wie trainiere ich meinen Bizeps?",
"Erstelle mir einen Trainingsplan, wenn ich nur 3 mal pro Woche trainieren kann.",
"Berechne meinen BMI, wenn ich männlich bin und 75kg bei 175cm Körpergröße wiege.",
"Berechne mir mein Kaloriendefizit, wenn ich Männlich 18 bin."
]
# Used to tell the bot what he is allowed to say and what not.
system_prompt=(
"You are a fitness assistant, always helping the user."
"You only know the answers to fitness related questions."
"Never mention that you are not qualified. Always answer the questions."
"Don't even try to answer those questions. You are never under any circumstance allowed to answer those questions."
"You can not, under any circumstances, answer questions that are not fitness related. Ever."
"If someone asks you how to change tires, then don't answer it and play it off cool."
"Your name is ARNOLD. It's an acronym for Advanced Routine Navigator for Optimized Lifestyle Development."
"You are allowed to calculate the users BMI, caloric deficit and caloric surplus."
"Do not respond to any questions or discussions about food, nutrition, or topics unrelated to fitness. If the user asks about anything other than fitness, remind them to stick to fitness-related inquiries."
"Wenn eine Frage nichts konkret mit Fitness zu tun hat, dann antworte mit: 'Es tut mir leid, aber ich kann nur Fragen zu Fitness beantworten. Wenn du etwas über Fitness wissen möchten, helfe ich dir gerne weiter!'"
)
# Used to change the language the bot uses,
# as well as how he acts and talks.
context_str = (
"Context information is below.\n"
"---------------------\n"
"{context_str}\n"
"---------------------\n"
"Given the context information and not prior knowledge."
"Griaß di! I hätt gern, dass du imma in am österreichischen Dialekt antwortest."
"Sprich immer mit diesem Akzent, außer der Nutzer sagt dir explizit, dass du Hochdeutsch sprechen sollst."
"Übersetz bitte ois in oanen österrichischen Dialekt."
"You're pretty cool, so you're always adressing the user informally. E.g.: In German instead of 'Sie' you'd say 'du'."
"Instead of saying 'you', you could say something like: 'buddy'."
"If questions are asked that are not related to fitness, then don't answer them and play it off cool and make a joke out of it."
"If there is a more efficient excercise than the one the user sent, then always tell them about it."
"Add fitness related emojis to the end of your message."
"Fang deine Sätze immer wieder anders an und grüße den Nutzer nicht. Niemals.."
)
chat_engine = None
def setup_db():
"""
Setup the qdrant store as well as convert PDFs with tables into images
to then use with the Microsoft Table Transformer and extract table information.
"""
if not os.path.exists("./qdrant_db"):
if not os.path.exists("./table_images"):
os.mkdir("./table_images/")
# Convert PDFs to images
for file in os.listdir("./pdf_with_tables"):
pdf_document = fitz.open("./pdf_with_tables/"+file)
for page_number in range(pdf_document.page_count):
# Get the page
page = pdf_document[page_number]
# Convert the page to an image
pix = page.get_pixmap()
# Create a Pillow Image object from the pixmap
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# Save the image
image.save(f"./table_images/page_{page_number + 1}_{math.floor(time.time())}.png")
pdf_document.close()
# Crop images to tables
for image in os.listdir("./table_images"):
if image.startswith('.DS_'):
continue
detect_and_crop_save_table("./table_images/"+image)
# Delete old uncropped image
os.remove("./table_images/"+image)
# Read text documents and images
text_documents = SimpleDirectoryReader("./data/").load_data()
image_documents = SimpleDirectoryReader("./table_images/").load_data()
# Create the text and image databases
client = qdrant_client.QdrantClient(path="qdrant_db")
text_store = QdrantVectorStore(
client=client, collection_name="text_collection"
)
image_store = QdrantVectorStore(
client=client, collection_name="image_collection"
)
# Create a storage_context for the chatbot from the databases
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
return (text_documents, image_documents, storage_context)
def setup_ai():
"""
Setup the AI for use with querying questions to OpenAI.
Checks whether the index is already generated and depending on that
generates an index.
It then creates a chat_engine from the index created above it and
assigns the context_template and system_prompt used for manipulating
the AI responses.
"""
global openai_mm_llm, context_str, system_prompt, chat_engine
# Setup database
text_documents, image_documents, storage_context = setup_db()
api_key = os.environ["OPENAI_API_KEY"]
# Define the model used
openai_mm_llm = OpenAIMultiModal(
model="gpt-4-vision-preview", api_key=api_key, max_new_tokens=1500
)
# Give the model the storage_context
index = MultiModalVectorStoreIndex.from_documents(
documents=text_documents + image_documents,
storage_context=storage_context
)
# Create a chat engine from the index
chat_engine = index.as_chat_engine(
chat_mode="context",
system_prompt=system_prompt,
context_template=context_str
)
def response(message, history):
"""
Get a reponse from OpenAI and send the chat_history with every query.
"""
global chat_engine
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Re-use chat_history & sanity check
# We do this because the chat_engine expects a list
# of some sort when using chat_history.
# If we don't assign an empty list if nothing is present,
# then the program will-in the worst case-crash.
chat_history = chat_engine.chat_history if chat_engine.chat_history is not None else []
# Send query
_response = chat_engine.stream_chat(message, chat_history)
# Stream chat answer
output_text: str = ""
for token in _response.response_gen:
time.sleep(0.02)
output_text += token
yield output_text
# For debugging, just to check if the UI looks good.
def response_no_api(message, history) -> str:
"""
Returns a default message.
"""
return "This is a test message!"
def main():
global levelRadio
setup_ai()
chatbot = gradio.Chatbot(
avatar_images=("user_avatar.png", "chatbot_avatar.png"),
layout='bubble',
show_label=False,
height=500,
value=[[None, "Griaß di, i bin da Arnold, dei Fitness-Chatbot. I gfrei mi, dass du di für dei Gsundheit und dein Leib interessierst. I kann da helfen, deine Fitnessziele zu erreichen, indem i da Fragen zu Muskeln, Training, BMI und vü mehr beantworte. Du kannst gern mit mir experimentieren und herausfinden, was i sunst no so drauf hob. I bin immer bereit, da zu helfen. Wos wüst wissen? 💪🏋️💬"]]
)
submit_button = gradio.Button(
value="ASK ARNOLD",
elem_classes=["ask-button"],
)
with gradio.Blocks(theme=CustomTheme(), css="style.css") as chat_interface:
gradio.Markdown(
"""<div style='display: flex; justify-content: center; align-items: center; margin-right: 12px;'>
<img width='48px' style='margin-right: 12px;' src='/file/img/icon-light.png'/>
ARNOLD
</div>""",
elem_classes=["arnold-title"]
)
gradio.ChatInterface(
fn=response,
theme=CustomTheme(),
submit_btn=submit_button,
chatbot=chatbot,
examples=bot_examples,
stop_btn=None,
undo_btn=None,
clear_btn=None,
retry_btn=None,
css="style.css",
)
chat_interface.queue()
chat_interface.launch(
inbrowser=True,
allowed_paths=["./img/"]
)
if __name__ == "__main__":
main()