Spaces:
Sleeping
Sleeping
from transformers import Wav2Vec2ForCTC, AutoProcessor | |
import torchaudio | |
import torch | |
import os | |
import librosa | |
hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN") | |
def read_audio_data(file): | |
speech_array, sampling_rate = torchaudio.load(file, normalize = True) | |
return speech_array, sampling_rate | |
def load_model(): | |
model_id = "Lguyogiro/w-apostrophe_wav2vec2-large-mms-1b-oji-adapterft" | |
target_lang = "oji" | |
processor = AutoProcessor.from_pretrained(model_id, target_lang=target_lang, use_auth_token=hf_token) | |
model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang=target_lang, ignore_mismatched_sizes=True, use_safetensors=True, use_auth_token=hf_token) | |
return processor, model | |
def inference(processor, model, audio_path): | |
audio, sampling_rate = librosa.load(audio_path, sr=16000) # Ensure the correct sampling rate | |
inputs = processor(audio, sampling_rate=sampling_rate, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values).logits | |
# Decode predicted tokens | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
#arr, rate = read_audio_data(audio_path) | |
#inputs = processor(arr.squeeze().numpy(), sampling_rate=16_000, return_tensors="pt") | |
#with torch.no_grad(): | |
# outputs = model(**inputs).logits | |
#ids = torch.argmax(outputs, dim=-1)[0] | |
#transcription = processor.decode(ids) | |
return transcription | |