Spaces:
Runtime error
Runtime error
import os | |
join = os.path.join | |
import argparse | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
from torchvision import datasets, models, transforms | |
from classifiers import resnet10, resnet18 | |
from utils_modify import sliding_window_inference,sliding_window_inference_large,__proc_np_hv | |
from PIL import Image | |
import torch.nn.functional as F | |
from skimage import io, segmentation, morphology, measure, exposure | |
import tifffile as tif | |
from models.flexible_unet_convnext import FlexibleUNet_star,FlexibleUNet_hv | |
from transformers import PretrainedConfig | |
from typing import List | |
from transformers import PreTrainedModel | |
from huggingface_hub import PyTorchModelHubMixin | |
from torch import nn | |
class ModelConfig(PretrainedConfig): | |
model_type = "cell_sribd" | |
def __init__( | |
self, | |
version = 1, | |
input_channels: int = 3, | |
roi_size: int = 512, | |
overlap: float = 0.5, | |
device: str = 'cpu', | |
**kwargs, | |
): | |
self.device = device | |
self.roi_size = (roi_size, roi_size) | |
self.input_channels = input_channels | |
self.overlap = overlap | |
self.np_thres, self.ksize, self.overall_thres, self.obj_size_thres = 0.6, 15, 0.4, 100 | |
self.n_rays = 32 | |
self.sw_batch_size = 4 | |
self.num_classes= 4 | |
self.block_size = 2048 | |
self.min_overlap = 128 | |
self.context = 128 | |
super().__init__(**kwargs) | |
class MultiStreamCellSegModel(PreTrainedModel): | |
config_class = ModelConfig | |
#print(config.input_channels) | |
def __init__(self, config): | |
super().__init__(config) | |
#print(config.input_channels) | |
self.config = config | |
self.cls_model = resnet18() | |
self.model0 = FlexibleUNet_star(in_channels=config.input_channels,out_channels=config.n_rays+1,backbone='convnext_small',pretrained=False,n_rays=config.n_rays,prob_out_channels=1,) | |
self.model1 = FlexibleUNet_star(in_channels=config.input_channels,out_channels=config.n_rays+1,backbone='convnext_small',pretrained=False,n_rays=config.n_rays,prob_out_channels=1,) | |
self.model2 = FlexibleUNet_star(in_channels=config.input_channels,out_channels=config.n_rays+1,backbone='convnext_small',pretrained=False,n_rays=config.n_rays,prob_out_channels=1,) | |
self.model3 = FlexibleUNet_hv(in_channels=config.input_channels,out_channels=2+2,backbone='convnext_small',pretrained=False,n_rays=2,prob_out_channels=2,) | |
self.preprocess=transforms.Compose([ | |
transforms.Resize(size=256), | |
transforms.CenterCrop(size=224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]) | |
def load_checkpoints(self,checkpoints): | |
self.cls_model.load_state_dict(checkpoints['cls_model']) | |
self.model0.load_state_dict(checkpoints['class1_model']['model_state_dict']) | |
self.model1.load_state_dict(checkpoints['class2_model']['model_state_dict']) | |
self.model2.load_state_dict(checkpoints['class3_model']['model_state_dict']) | |
self.model3.load_state_dict(checkpoints['class4_model']) | |
def forward(self, pre_img_data): | |
inputs=self.preprocess(Image.fromarray(pre_img_data)).unsqueeze(0) | |
outputs = self.cls_model(inputs) | |
_, preds = torch.max(outputs, 1) | |
label=preds[0].cpu().numpy() | |
test_npy01 = pre_img_data | |
if label in [0,1,2]: | |
if label == 0: | |
output_label = sliding_window_inference_large(test_npy01,self.config.block_size,self.config.min_overlap,self.config.context, self.config.roi_size,self.config.sw_batch_size,predictor=self.model0,device=self.config.device) | |
elif label == 1: | |
output_label = sliding_window_inference_large(test_npy01,self.config.block_size,self.config.min_overlap,self.config.context, self.config.roi_size,self.config.sw_batch_size,predictor=self.model1,device=self.config.device) | |
elif label == 2: | |
output_label = sliding_window_inference_large(test_npy01,self.config.block_size,self.config.min_overlap,self.config.context, self.config.roi_size,self.config.sw_batch_size,predictor=self.model2,device=self.config.device) | |
else: | |
test_tensor = torch.from_numpy(np.expand_dims(test_npy01, 0)).permute(0, 3, 1, 2).type(torch.FloatTensor) | |
output_hv, output_np = sliding_window_inference(test_tensor, self.config.roi, self.config.sw_batch_size, self.model3, overlap=self.config.overlap,device=self.config.device) | |
pred_dict = {'np': output_np, 'hv': output_hv} | |
pred_dict = OrderedDict( | |
[[k, v.permute(0, 2, 3, 1).contiguous()] for k, v in pred_dict.items()] # NHWC | |
) | |
pred_dict["np"] = F.softmax(pred_dict["np"], dim=-1)[..., 1:] | |
pred_output = torch.cat(list(pred_dict.values()), -1).cpu().numpy() # NHW3 | |
pred_map = np.squeeze(pred_output) # HW3 | |
pred_inst = __proc_np_hv(pred_map, self.config.np_thres, self.config.ksize, self.config.overall_thres, self.config.obj_size_thres) | |
raw_pred_shape = pred_inst.shape[:2] | |
output_label = pred_inst | |
return output_label | |