Spaces:
Runtime error
Runtime error
from __future__ import print_function, unicode_literals, absolute_import, division | |
import numpy as np | |
from time import time | |
from .utils import _normalize_grid | |
def _ind_prob_thresh(prob, prob_thresh, b=2): | |
if b is not None and np.isscalar(b): | |
b = ((b,b),)*prob.ndim | |
ind_thresh = prob > prob_thresh | |
if b is not None: | |
_ind_thresh = np.zeros_like(ind_thresh) | |
ss = tuple(slice(_bs[0] if _bs[0]>0 else None, | |
-_bs[1] if _bs[1]>0 else None) for _bs in b) | |
_ind_thresh[ss] = True | |
ind_thresh &= _ind_thresh | |
return ind_thresh | |
def _non_maximum_suppression_old(coord, prob, grid=(1,1), b=2, nms_thresh=0.5, prob_thresh=0.5, verbose=False, max_bbox_search=True): | |
"""2D coordinates of the polys that survive from a given prediction (prob, coord) | |
prob.shape = (Ny,Nx) | |
coord.shape = (Ny,Nx,2,n_rays) | |
b: don't use pixel closer than b pixels to the image boundary | |
returns retained points | |
""" | |
from .lib.stardist2d import c_non_max_suppression_inds_old | |
# TODO: using b>0 with grid>1 can suppress small/cropped objects at the image boundary | |
assert prob.ndim == 2 | |
assert coord.ndim == 4 | |
grid = _normalize_grid(grid,2) | |
# mask = prob > prob_thresh | |
# if b is not None and b > 0: | |
# _mask = np.zeros_like(mask) | |
# _mask[b:-b,b:-b] = True | |
# mask &= _mask | |
mask = _ind_prob_thresh(prob, prob_thresh, b) | |
polygons = coord[mask] | |
scores = prob[mask] | |
# sort scores descendingly | |
ind = np.argsort(scores)[::-1] | |
survivors = np.zeros(len(ind), bool) | |
polygons = polygons[ind] | |
scores = scores[ind] | |
if max_bbox_search: | |
# map pixel indices to ids of sorted polygons (-1 => polygon at that pixel not a candidate) | |
mapping = -np.ones(mask.shape,np.int32) | |
mapping.flat[ np.flatnonzero(mask)[ind] ] = range(len(ind)) | |
else: | |
mapping = np.empty((0,0),np.int32) | |
if verbose: | |
t = time() | |
survivors[ind] = c_non_max_suppression_inds_old(np.ascontiguousarray(polygons.astype(np.int32)), | |
mapping, np.float32(nms_thresh), np.int32(max_bbox_search), | |
np.int32(grid[0]), np.int32(grid[1]),np.int32(verbose)) | |
if verbose: | |
print("keeping %s/%s polygons" % (np.count_nonzero(survivors), len(polygons))) | |
print("NMS took %.4f s" % (time() - t)) | |
points = np.stack([ii[survivors] for ii in np.nonzero(mask)],axis=-1) | |
return points | |
def non_maximum_suppression(dist, prob, grid=(1,1), b=2, nms_thresh=0.5, prob_thresh=0.5, | |
use_bbox=True, use_kdtree=True, verbose=False,cut=False): | |
"""Non-Maximum-Supression of 2D polygons | |
Retains only polygons whose overlap is smaller than nms_thresh | |
dist.shape = (Ny,Nx, n_rays) | |
prob.shape = (Ny,Nx) | |
returns the retained points, probabilities, and distances: | |
points, prob, dist = non_maximum_suppression(dist, prob, .... | |
""" | |
# TODO: using b>0 with grid>1 can suppress small/cropped objects at the image boundary | |
assert prob.ndim == 2 and dist.ndim == 3 and prob.shape == dist.shape[:2] | |
dist = np.asarray(dist) | |
prob = np.asarray(prob) | |
n_rays = dist.shape[-1] | |
grid = _normalize_grid(grid,2) | |
# mask = prob > prob_thresh | |
# if b is not None and b > 0: | |
# _mask = np.zeros_like(mask) | |
# _mask[b:-b,b:-b] = True | |
# mask &= _mask | |
mask = _ind_prob_thresh(prob, prob_thresh, b) | |
points = np.stack(np.where(mask), axis=1) | |
dist = dist[mask] | |
scores = prob[mask] | |
# sort scores descendingly | |
ind = np.argsort(scores)[::-1] | |
if cut is True and ind.shape[0] > 20000: | |
#if cut is True and : | |
ind = ind[:round(ind.shape[0]*0.5)] | |
dist = dist[ind] | |
scores = scores[ind] | |
points = points[ind] | |
points = (points * np.array(grid).reshape((1,2))) | |
if verbose: | |
t = time() | |
inds = non_maximum_suppression_inds(dist, points.astype(np.int32, copy=False), scores=scores, | |
use_bbox=use_bbox, use_kdtree=use_kdtree, | |
thresh=nms_thresh, verbose=verbose) | |
if verbose: | |
print("keeping %s/%s polygons" % (np.count_nonzero(inds), len(inds))) | |
print("NMS took %.4f s" % (time() - t)) | |
return points[inds], scores[inds], dist[inds] | |
def non_maximum_suppression_sparse(dist, prob, points, b=2, nms_thresh=0.5, | |
use_bbox=True, use_kdtree = True, verbose=False): | |
"""Non-Maximum-Supression of 2D polygons from a list of dists, probs (scores), and points | |
Retains only polyhedra whose overlap is smaller than nms_thresh | |
dist.shape = (n_polys, n_rays) | |
prob.shape = (n_polys,) | |
points.shape = (n_polys,2) | |
returns the retained instances | |
(pointsi, probi, disti, indsi) | |
with | |
pointsi = points[indsi] ... | |
""" | |
# TODO: using b>0 with grid>1 can suppress small/cropped objects at the image boundary | |
dist = np.asarray(dist) | |
prob = np.asarray(prob) | |
points = np.asarray(points) | |
n_rays = dist.shape[-1] | |
assert dist.ndim == 2 and prob.ndim == 1 and points.ndim == 2 and \ | |
points.shape[-1]==2 and len(prob) == len(dist) == len(points) | |
verbose and print("predicting instances with nms_thresh = {nms_thresh}".format(nms_thresh=nms_thresh), flush=True) | |
inds_original = np.arange(len(prob)) | |
_sorted = np.argsort(prob)[::-1] | |
probi = prob[_sorted] | |
disti = dist[_sorted] | |
pointsi = points[_sorted] | |
inds_original = inds_original[_sorted] | |
if verbose: | |
print("non-maximum suppression...") | |
t = time() | |
inds = non_maximum_suppression_inds(disti, pointsi, scores=probi, thresh=nms_thresh, use_kdtree = use_kdtree, verbose=verbose) | |
if verbose: | |
print("keeping %s/%s polyhedra" % (np.count_nonzero(inds), len(inds))) | |
print("NMS took %.4f s" % (time() - t)) | |
return pointsi[inds], probi[inds], disti[inds], inds_original[inds] | |
def non_maximum_suppression_inds(dist, points, scores, thresh=0.5, use_bbox=True, use_kdtree = True, verbose=1): | |
""" | |
Applies non maximum supression to ray-convex polygons given by dists and points | |
sorted by scores and IoU threshold | |
P1 will suppress P2, if IoU(P1,P2) > thresh | |
with IoU(P1,P2) = Ainter(P1,P2) / min(A(P1),A(P2)) | |
i.e. the smaller thresh, the more polygons will be supressed | |
dist.shape = (n_poly, n_rays) | |
point.shape = (n_poly, 2) | |
score.shape = (n_poly,) | |
returns indices of selected polygons | |
""" | |
from stardist.lib.stardist2d import c_non_max_suppression_inds | |
assert dist.ndim == 2 | |
assert points.ndim == 2 | |
n_poly = dist.shape[0] | |
if scores is None: | |
scores = np.ones(n_poly) | |
assert len(scores) == n_poly | |
assert points.shape[0] == n_poly | |
def _prep(x, dtype): | |
return np.ascontiguousarray(x.astype(dtype, copy=False)) | |
inds = c_non_max_suppression_inds(_prep(dist, np.float32), | |
_prep(points, np.float32), | |
int(use_kdtree), | |
int(use_bbox), | |
int(verbose), | |
np.float32(thresh)) | |
return inds | |
######### | |
def non_maximum_suppression_3d(dist, prob, rays, grid=(1,1,1), b=2, nms_thresh=0.5, prob_thresh=0.5, use_bbox=True, use_kdtree=True, verbose=False): | |
"""Non-Maximum-Supression of 3D polyhedra | |
Retains only polyhedra whose overlap is smaller than nms_thresh | |
dist.shape = (Nz,Ny,Nx, n_rays) | |
prob.shape = (Nz,Ny,Nx) | |
returns the retained points, probabilities, and distances: | |
points, prob, dist = non_maximum_suppression_3d(dist, prob, .... | |
""" | |
# TODO: using b>0 with grid>1 can suppress small/cropped objects at the image boundary | |
dist = np.asarray(dist) | |
prob = np.asarray(prob) | |
assert prob.ndim == 3 and dist.ndim == 4 and dist.shape[-1] == len(rays) and prob.shape == dist.shape[:3] | |
grid = _normalize_grid(grid,3) | |
verbose and print("predicting instances with prob_thresh = {prob_thresh} and nms_thresh = {nms_thresh}".format(prob_thresh=prob_thresh, nms_thresh=nms_thresh), flush=True) | |
# ind_thresh = prob > prob_thresh | |
# if b is not None and b > 0: | |
# _ind_thresh = np.zeros_like(ind_thresh) | |
# _ind_thresh[b:-b,b:-b,b:-b] = True | |
# ind_thresh &= _ind_thresh | |
ind_thresh = _ind_prob_thresh(prob, prob_thresh, b) | |
points = np.stack(np.where(ind_thresh), axis=1) | |
verbose and print("found %s candidates"%len(points)) | |
probi = prob[ind_thresh] | |
disti = dist[ind_thresh] | |
_sorted = np.argsort(probi)[::-1] | |
probi = probi[_sorted] | |
disti = disti[_sorted] | |
points = points[_sorted] | |
verbose and print("non-maximum suppression...") | |
points = (points * np.array(grid).reshape((1,3))) | |
inds = non_maximum_suppression_3d_inds(disti, points, rays=rays, scores=probi, thresh=nms_thresh, | |
use_bbox=use_bbox, use_kdtree = use_kdtree, | |
verbose=verbose) | |
verbose and print("keeping %s/%s polyhedra" % (np.count_nonzero(inds), len(inds))) | |
return points[inds], probi[inds], disti[inds] | |
def non_maximum_suppression_3d_sparse(dist, prob, points, rays, b=2, nms_thresh=0.5, use_kdtree = True, verbose=False): | |
"""Non-Maximum-Supression of 3D polyhedra from a list of dists, probs and points | |
Retains only polyhedra whose overlap is smaller than nms_thresh | |
dist.shape = (n_polys, n_rays) | |
prob.shape = (n_polys,) | |
points.shape = (n_polys,3) | |
returns the retained instances | |
(pointsi, probi, disti, indsi) | |
with | |
pointsi = points[indsi] ... | |
""" | |
# TODO: using b>0 with grid>1 can suppress small/cropped objects at the image boundary | |
dist = np.asarray(dist) | |
prob = np.asarray(prob) | |
points = np.asarray(points) | |
assert dist.ndim == 2 and prob.ndim == 1 and points.ndim == 2 and \ | |
dist.shape[-1] == len(rays) and points.shape[-1]==3 and len(prob) == len(dist) == len(points) | |
verbose and print("predicting instances with nms_thresh = {nms_thresh}".format(nms_thresh=nms_thresh), flush=True) | |
inds_original = np.arange(len(prob)) | |
_sorted = np.argsort(prob)[::-1] | |
probi = prob[_sorted] | |
disti = dist[_sorted] | |
pointsi = points[_sorted] | |
inds_original = inds_original[_sorted] | |
verbose and print("non-maximum suppression...") | |
inds = non_maximum_suppression_3d_inds(disti, pointsi, rays=rays, scores=probi, thresh=nms_thresh, use_kdtree = use_kdtree, verbose=verbose) | |
verbose and print("keeping %s/%s polyhedra" % (np.count_nonzero(inds), len(inds))) | |
return pointsi[inds], probi[inds], disti[inds], inds_original[inds] | |
def non_maximum_suppression_3d_inds(dist, points, rays, scores, thresh=0.5, use_bbox=True, use_kdtree = True, verbose=1): | |
""" | |
Applies non maximum supression to ray-convex polyhedra given by dists and rays | |
sorted by scores and IoU threshold | |
P1 will suppress P2, if IoU(P1,P2) > thresh | |
with IoU(P1,P2) = Ainter(P1,P2) / min(A(P1),A(P2)) | |
i.e. the smaller thresh, the more polygons will be supressed | |
dist.shape = (n_poly, n_rays) | |
point.shape = (n_poly, 3) | |
score.shape = (n_poly,) | |
returns indices of selected polygons | |
""" | |
from .lib.stardist3d import c_non_max_suppression_inds | |
assert dist.ndim == 2 | |
assert points.ndim == 2 | |
assert dist.shape[1] == len(rays) | |
n_poly = dist.shape[0] | |
if scores is None: | |
scores = np.ones(n_poly) | |
assert len(scores) == n_poly | |
assert points.shape[0] == n_poly | |
# sort scores descendingly | |
ind = np.argsort(scores)[::-1] | |
survivors = np.ones(n_poly, bool) | |
dist = dist[ind] | |
points = points[ind] | |
scores = scores[ind] | |
def _prep(x, dtype): | |
return np.ascontiguousarray(x.astype(dtype, copy=False)) | |
if verbose: | |
t = time() | |
survivors[ind] = c_non_max_suppression_inds(_prep(dist, np.float32), | |
_prep(points, np.float32), | |
_prep(rays.vertices, np.float32), | |
_prep(rays.faces, np.int32), | |
_prep(scores, np.float32), | |
int(use_bbox), | |
int(use_kdtree), | |
int(verbose), | |
np.float32(thresh)) | |
if verbose: | |
print("NMS took %.4f s" % (time() - t)) | |
return survivors | |