LethallyHealthy commited on
Commit
a428eda
·
1 Parent(s): 2b1d5a0

Update predictor.py

Browse files
Files changed (1) hide show
  1. predictor.py +8 -5
predictor.py CHANGED
@@ -4,6 +4,7 @@ import numpy as np
4
  import lightgbm as lgb
5
  from lightgbm.callback import early_stopping
6
  import shap
 
7
 
8
  from sklearn.ensemble import GradientBoostingRegressor
9
  from sklearn.model_selection import train_test_split
@@ -119,14 +120,16 @@ def create_shap_models(data):
119
  obj1 = shap.force_plot(explainer.expected_value, shap_values=shap_values, feature_names=data.columns)
120
 
121
  shap.initjs()
122
- obj2 = shap.decision_plot(explainer.expected_value, shap_values, feature_names=np.array(data.columns))
 
123
 
124
  shap.initjs()
125
- obj3 = shap.summary_plot(shap_values=shap_values, feature_names=data.columns)
 
126
 
127
  interaction_values = explainer.shap_interaction_values(data)
128
  interaction_values[0].round(2)
129
- pd.DataFrame(interaction_values[0].round(2)).head(60)
130
 
131
- objs = [obj1,obj2,obj3]
132
- return objs
 
4
  import lightgbm as lgb
5
  from lightgbm.callback import early_stopping
6
  import shap
7
+ import streamlit as st
8
 
9
  from sklearn.ensemble import GradientBoostingRegressor
10
  from sklearn.model_selection import train_test_split
 
120
  obj1 = shap.force_plot(explainer.expected_value, shap_values=shap_values, feature_names=data.columns)
121
 
122
  shap.initjs()
123
+ shap.decision_plot(explainer.expected_value, shap_values, feature_names=np.array(data.columns))
124
+ st.pyplot(bbox_inches='tight')
125
 
126
  shap.initjs()
127
+ shap.summary_plot(shap_values=shap_values, feature_names=data.columns)
128
+ st.pyplot(bbox_inches='tight')
129
 
130
  interaction_values = explainer.shap_interaction_values(data)
131
  interaction_values[0].round(2)
132
+ st.write(pd.DataFrame(interaction_values[0].round(2)).head(60))
133
 
134
+
135
+ return obj1