Spaces:
Sleeping
Sleeping
Update app2.py
Browse files
app2.py
CHANGED
|
@@ -15,502 +15,30 @@ from pathlib import Path
|
|
| 15 |
import gradio as gr
|
| 16 |
from rich.console import Console
|
| 17 |
from openai import OpenAI, AsyncOpenAI
|
| 18 |
-
import asyncio
|
| 19 |
-
from collections import defaultdict
|
| 20 |
-
import json
|
| 21 |
-
import os
|
| 22 |
-
import queue
|
| 23 |
-
import traceback
|
| 24 |
-
import uuid
|
| 25 |
-
from typing import Dict, List, Any, Optional, Callable, Coroutine
|
| 26 |
-
from dataclasses import dataclass
|
| 27 |
-
from queue import Queue, Empty
|
| 28 |
-
from threading import Lock, Event, Thread
|
| 29 |
-
import threading
|
| 30 |
-
from concurrent.futures import ThreadPoolExecutor
|
| 31 |
-
import time
|
| 32 |
-
from openai import OpenAI, AsyncOpenAI
|
| 33 |
-
from rich.console import Console
|
| 34 |
-
import gradio as gr
|
| 35 |
-
import pyttsx3
|
| 36 |
-
import re
|
| 37 |
-
from pathlib import Path
|
| 38 |
-
#############################################################
|
| 39 |
-
BASE_URL="http://localhost:1234/v1"
|
| 40 |
-
BASE_API_KEY="not-needed"
|
| 41 |
-
BASE_CLIENT = AsyncOpenAI(
|
| 42 |
-
base_url=BASE_URL,
|
| 43 |
-
api_key=BASE_API_KEY
|
| 44 |
-
) # Global state for client
|
| 45 |
-
BASEMODEL_ID = "leroydyer/qwen/qwen3-0.6b-q4_k_m.gguf" # Global state for selected model ID
|
| 46 |
-
CLIENT =OpenAI(
|
| 47 |
-
base_url=BASE_URL,
|
| 48 |
-
api_key=BASE_API_KEY)
|
| 49 |
-
# --- Configuration ---
|
| 50 |
-
DEFAULT_BASE_URL = "http://localhost:1234/v1"
|
| 51 |
-
DEFAULT_API_KEY = "not-needed"
|
| 52 |
-
DEFAULT_MODEL_ID = "leroydyer/qwen/qwen3-0.6b-q4_k_m.gguf"
|
| 53 |
-
DEFAULT_TEMPERATURE = 0.3
|
| 54 |
-
DEFAULT_MAX_TOKENS = 5000
|
| 55 |
-
|
| 56 |
|
| 57 |
# --- Configuration ---
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
DEFAULT_TEMPERATURE = 0.7
|
| 62 |
DEFAULT_MAX_TOKENS = 5000
|
| 63 |
-
console = Console()
|
| 64 |
-
class EventManager:
|
| 65 |
-
def __init__(self):
|
| 66 |
-
self._handlers = defaultdict(list)
|
| 67 |
-
self._lock = threading.Lock()
|
| 68 |
-
def register(self, event: str, handler: Callable):
|
| 69 |
-
with self._lock:
|
| 70 |
-
self._handlers[event].append(handler)
|
| 71 |
-
def unregister(self, event: str, handler: Callable):
|
| 72 |
-
with self._lock:
|
| 73 |
-
if event in self._handlers and handler in self._handlers[event]:
|
| 74 |
-
self._handlers[event].remove(handler)
|
| 75 |
-
def raise_event(self, event: str, data: Any):
|
| 76 |
-
with self._lock:
|
| 77 |
-
handlers = self._handlers[event][:]
|
| 78 |
-
for handler in handlers:
|
| 79 |
-
try:
|
| 80 |
-
handler(data)
|
| 81 |
-
except Exception as e:
|
| 82 |
-
console.log(f"Error in event handler for {event}: {e}", style="bold red")
|
| 83 |
-
|
| 84 |
-
EVENT_MANAGER = EventManager()
|
| 85 |
-
def RegisterEvent(event: str, handler: Callable):
|
| 86 |
-
EVENT_MANAGER.register(event, handler)
|
| 87 |
-
def RaiseEvent(event: str, data: Any):
|
| 88 |
-
EVENT_MANAGER.raise_event(event, data)
|
| 89 |
-
def UnregisterEvent(event: str, handler: Callable):
|
| 90 |
-
EVENT_MANAGER.unregister(event, handler)
|
| 91 |
-
@dataclass
|
| 92 |
-
class LLMMessage:
|
| 93 |
-
role: str
|
| 94 |
-
content: str
|
| 95 |
-
message_id: str = None
|
| 96 |
-
conversation_id: str = None
|
| 97 |
-
timestamp: float = None
|
| 98 |
-
metadata: Dict[str, Any] = None
|
| 99 |
-
def __post_init__(self):
|
| 100 |
-
if self.message_id is None:
|
| 101 |
-
self.message_id = str(uuid.uuid4())
|
| 102 |
-
if self.timestamp is None:
|
| 103 |
-
self.timestamp = time.time()
|
| 104 |
-
if self.metadata is None:
|
| 105 |
-
self.metadata = {}
|
| 106 |
-
|
| 107 |
-
@dataclass
|
| 108 |
-
class LLMRequest:
|
| 109 |
-
message: LLMMessage
|
| 110 |
-
response_event: str = None
|
| 111 |
-
callback: Callable = None
|
| 112 |
-
def __post_init__(self):
|
| 113 |
-
if self.response_event is None:
|
| 114 |
-
self.response_event = f"llm_response_{self.message.message_id}"
|
| 115 |
-
|
| 116 |
-
@dataclass
|
| 117 |
-
class LLMResponse:
|
| 118 |
-
message: LLMMessage
|
| 119 |
-
request_id: str
|
| 120 |
-
success: bool = True
|
| 121 |
-
error: str = None
|
| 122 |
-
|
| 123 |
-
class LLMAgent:
|
| 124 |
-
"""Main Agent Driver !
|
| 125 |
-
Agent For Multiple messages at once ,
|
| 126 |
-
has a message queing service as well as agenerator method for easy intergration with console
|
| 127 |
-
applications as well as ui !"""
|
| 128 |
-
def __init__(
|
| 129 |
-
self,
|
| 130 |
-
model_id: str = DEFAULT_MODEL_ID,
|
| 131 |
-
system_prompt: str = None,
|
| 132 |
-
max_queue_size: int = 1000,
|
| 133 |
-
max_retries: int = 3,
|
| 134 |
-
timeout: int = 30000,
|
| 135 |
-
max_tokens: int = 5000,
|
| 136 |
-
temperature: float = 0.3,
|
| 137 |
-
base_url: str = "http://localhost:1234/v1",
|
| 138 |
-
api_key: str = "not-needed",
|
| 139 |
-
generate_fn: Callable[[List[Dict[str, str]]], Coroutine[Any, Any, str]] = None
|
| 140 |
-
):
|
| 141 |
-
self.model_id = model_id
|
| 142 |
-
self.system_prompt = system_prompt or "You are a helpful AI assistant."
|
| 143 |
-
self.request_queue = Queue(maxsize=max_queue_size)
|
| 144 |
-
self.max_retries = max_retries
|
| 145 |
-
self.timeout = timeout
|
| 146 |
-
self.is_running = False
|
| 147 |
-
self._stop_event = Event()
|
| 148 |
-
self.processing_thread = None
|
| 149 |
-
# Conversation tracking
|
| 150 |
-
self.conversations: Dict[str, List[LLMMessage]] = {}
|
| 151 |
-
self.max_history_length = 20
|
| 152 |
-
self._generate = generate_fn or self._default_generate
|
| 153 |
-
self.api_key = api_key
|
| 154 |
-
self.base_url = base_url
|
| 155 |
-
self.max_tokens = max_tokens
|
| 156 |
-
self.temperature = temperature
|
| 157 |
-
self.async_client = self.CreateClient(base_url, api_key)
|
| 158 |
-
# Active requests waiting for responses
|
| 159 |
-
self.pending_requests: Dict[str, LLMRequest] = {}
|
| 160 |
-
self.pending_requests_lock = Lock()
|
| 161 |
-
# Register internal event handlers
|
| 162 |
-
self._register_event_handlers()
|
| 163 |
-
# Start the processing thread immediately
|
| 164 |
-
self.start()
|
| 165 |
-
|
| 166 |
-
async def _default_generate(self, messages: List[Dict[str, str]]) -> str:
|
| 167 |
-
"""Default generate function if none provided"""
|
| 168 |
-
return await self.openai_generate(messages)
|
| 169 |
-
|
| 170 |
-
def _register_event_handlers(self):
|
| 171 |
-
"""Register internal event handlers for response routing"""
|
| 172 |
-
RegisterEvent("llm_internal_response", self._handle_internal_response)
|
| 173 |
-
|
| 174 |
-
def _handle_internal_response(self, response: LLMResponse):
|
| 175 |
-
"""Route responses to the appropriate request handlers"""
|
| 176 |
-
console.log(f"[bold cyan]Handling internal response for: {response.request_id}[/bold cyan]")
|
| 177 |
-
request = None
|
| 178 |
-
with self.pending_requests_lock:
|
| 179 |
-
if response.request_id in self.pending_requests:
|
| 180 |
-
request = self.pending_requests[response.request_id]
|
| 181 |
-
del self.pending_requests[response.request_id]
|
| 182 |
-
console.log(f"Found pending request for: {response.request_id}")
|
| 183 |
-
else:
|
| 184 |
-
console.log(f"No pending request found for: {response.request_id}", style="yellow")
|
| 185 |
-
return
|
| 186 |
-
# Raise the specific response event
|
| 187 |
-
if request.response_event:
|
| 188 |
-
console.log(f"[bold green]Raising event: {request.response_event}[/bold green]")
|
| 189 |
-
RaiseEvent(request.response_event, response)
|
| 190 |
-
# Call callback if provided
|
| 191 |
-
if request.callback:
|
| 192 |
-
try:
|
| 193 |
-
console.log(f"[bold yellow]Calling callback for: {response.request_id}[/bold yellow]")
|
| 194 |
-
request.callback(response)
|
| 195 |
-
except Exception as e:
|
| 196 |
-
console.log(f"Error in callback: {e}", style="bold red")
|
| 197 |
-
|
| 198 |
-
def _add_to_conversation_history(self, conversation_id: str, message: LLMMessage):
|
| 199 |
-
"""Add message to conversation history"""
|
| 200 |
-
if conversation_id not in self.conversations:
|
| 201 |
-
self.conversations[conversation_id] = []
|
| 202 |
-
self.conversations[conversation_id].append(message)
|
| 203 |
-
# Trim history if too long
|
| 204 |
-
if len(self.conversations[conversation_id]) > self.max_history_length * 2:
|
| 205 |
-
self.conversations[conversation_id] = self.conversations[conversation_id][-(self.max_history_length * 2):]
|
| 206 |
-
|
| 207 |
-
def _build_messages_from_conversation(self, conversation_id: str, new_message: LLMMessage) -> List[Dict[str, str]]:
|
| 208 |
-
"""Build message list from conversation history"""
|
| 209 |
-
messages = []
|
| 210 |
-
# Add system prompt
|
| 211 |
-
if self.system_prompt:
|
| 212 |
-
messages.append({"role": "system", "content": self.system_prompt})
|
| 213 |
-
# Add conversation history
|
| 214 |
-
if conversation_id in self.conversations:
|
| 215 |
-
for msg in self.conversations[conversation_id][-self.max_history_length:]:
|
| 216 |
-
messages.append({"role": msg.role, "content": msg.content})
|
| 217 |
-
# Add the new message
|
| 218 |
-
messages.append({"role": new_message.role, "content": new_message.content})
|
| 219 |
-
return messages
|
| 220 |
-
|
| 221 |
-
def _process_llm_request(self, request: LLMRequest):
|
| 222 |
-
"""Process a single LLM request"""
|
| 223 |
-
console.log(f"[bold green]Processing LLM request: {request.message.message_id}[/bold green]")
|
| 224 |
-
try:
|
| 225 |
-
# Build messages for LLM
|
| 226 |
-
messages = self._build_messages_from_conversation(
|
| 227 |
-
request.message.conversation_id or "default",
|
| 228 |
-
request.message
|
| 229 |
-
)
|
| 230 |
-
console.log(f"Calling LLM with {len(messages)} messages")
|
| 231 |
-
# Call LLM - Use sync call for thread compatibility
|
| 232 |
-
response_content = self._call_llm_sync(messages)
|
| 233 |
-
console.log(f"[bold green]LLM response received: {response_content}...[/bold green]")
|
| 234 |
-
# Create response message
|
| 235 |
-
response_message = LLMMessage(
|
| 236 |
-
role="assistant",
|
| 237 |
-
content=response_content,
|
| 238 |
-
conversation_id=request.message.conversation_id,
|
| 239 |
-
metadata={"request_id": request.message.message_id}
|
| 240 |
-
)
|
| 241 |
-
# Update conversation history
|
| 242 |
-
self._add_to_conversation_history(
|
| 243 |
-
request.message.conversation_id or "default",
|
| 244 |
-
request.message
|
| 245 |
-
)
|
| 246 |
-
self._add_to_conversation_history(
|
| 247 |
-
request.message.conversation_id or "default",
|
| 248 |
-
response_message
|
| 249 |
-
)
|
| 250 |
-
# Create and send response
|
| 251 |
-
response = LLMResponse(
|
| 252 |
-
message=response_message,
|
| 253 |
-
request_id=request.message.message_id,
|
| 254 |
-
success=True
|
| 255 |
-
)
|
| 256 |
-
console.log(f"[bold blue]Sending internal response for: {request.message.message_id}[/bold blue]")
|
| 257 |
-
RaiseEvent("llm_internal_response", response)
|
| 258 |
-
except Exception as e:
|
| 259 |
-
console.log(f"[bold red]Error processing LLM request: {e}[/bold red]")
|
| 260 |
-
traceback.print_exc()
|
| 261 |
-
# Create error response
|
| 262 |
-
error_response = LLMResponse(
|
| 263 |
-
message=LLMMessage(
|
| 264 |
-
role="system",
|
| 265 |
-
content=f"Error: {str(e)}",
|
| 266 |
-
conversation_id=request.message.conversation_id
|
| 267 |
-
),
|
| 268 |
-
request_id=request.message.message_id,
|
| 269 |
-
success=False,
|
| 270 |
-
error=str(e)
|
| 271 |
-
)
|
| 272 |
-
RaiseEvent("llm_internal_response", error_response)
|
| 273 |
-
|
| 274 |
-
def _call_llm_sync(self, messages: List[Dict[str, str]]) -> str:
|
| 275 |
-
"""Sync call to the LLM with retry logic"""
|
| 276 |
-
console.log(f"Making LLM call to {self.model_id}")
|
| 277 |
-
for attempt in range(self.max_retries):
|
| 278 |
-
try:
|
| 279 |
-
response = CLIENT.chat.completions.create(
|
| 280 |
-
model=self.model_id,
|
| 281 |
-
messages=messages,
|
| 282 |
-
temperature=self.temperature,
|
| 283 |
-
max_tokens=self.max_tokens
|
| 284 |
-
)
|
| 285 |
-
content = response.choices[0].message.content
|
| 286 |
-
console.log(f"LLM call successful, response length: {len(content)}")
|
| 287 |
-
return content
|
| 288 |
-
except Exception as e:
|
| 289 |
-
console.log(f"LLM call attempt {attempt + 1} failed: {e}")
|
| 290 |
-
if attempt == self.max_retries - 1:
|
| 291 |
-
raise e
|
| 292 |
-
time.sleep(1) # Wait before retry
|
| 293 |
-
def _process_queue(self):
|
| 294 |
-
"""Main queue processing loop"""
|
| 295 |
-
console.log("[bold cyan]LLM Agent queue processor started[/bold cyan]")
|
| 296 |
-
while not self._stop_event.is_set():
|
| 297 |
-
try:
|
| 298 |
-
request = self.request_queue.get(timeout=1.0)
|
| 299 |
-
if request:
|
| 300 |
-
console.log(f"Got request from queue: {request.message.message_id}")
|
| 301 |
-
self._process_llm_request(request)
|
| 302 |
-
self.request_queue.task_done()
|
| 303 |
-
except Empty:
|
| 304 |
-
continue
|
| 305 |
-
except Exception as e:
|
| 306 |
-
console.log(f"Error in queue processing: {e}", style="bold red")
|
| 307 |
-
traceback.print_exc()
|
| 308 |
-
console.log("[bold cyan]LLM Agent queue processor stopped[/bold cyan]")
|
| 309 |
-
|
| 310 |
-
def send_message(
|
| 311 |
-
self,
|
| 312 |
-
content: str,
|
| 313 |
-
role: str = "user",
|
| 314 |
-
conversation_id: str = None,
|
| 315 |
-
response_event: str = None,
|
| 316 |
-
callback: Callable = None,
|
| 317 |
-
metadata: Dict = None
|
| 318 |
-
) -> str:
|
| 319 |
-
"""Send a message to the LLM and get response via events"""
|
| 320 |
-
if not self.is_running:
|
| 321 |
-
raise RuntimeError("LLM Agent is not running. Call start() first.")
|
| 322 |
-
# Create message
|
| 323 |
-
message = LLMMessage(
|
| 324 |
-
role=role,
|
| 325 |
-
content=content,
|
| 326 |
-
conversation_id=conversation_id,
|
| 327 |
-
metadata=metadata or {}
|
| 328 |
-
)
|
| 329 |
-
# Create request
|
| 330 |
-
request = LLMRequest(
|
| 331 |
-
message=message,
|
| 332 |
-
response_event=response_event,
|
| 333 |
-
callback=callback
|
| 334 |
-
)
|
| 335 |
-
# Store in pending requests BEFORE adding to queue
|
| 336 |
-
with self.pending_requests_lock:
|
| 337 |
-
self.pending_requests[message.message_id] = request
|
| 338 |
-
console.log(f"Added to pending requests: {message.message_id}")
|
| 339 |
-
# Add to queue
|
| 340 |
-
try:
|
| 341 |
-
self.request_queue.put(request, timeout=5.0)
|
| 342 |
-
console.log(f"[bold magenta]Message queued: {message.message_id}, Content: {content[:50]}...[/bold magenta]")
|
| 343 |
-
return message.message_id
|
| 344 |
-
except queue.Full:
|
| 345 |
-
console.log(f"[bold red]Queue full, cannot send message[/bold red]")
|
| 346 |
-
with self.pending_requests_lock:
|
| 347 |
-
if message.message_id in self.pending_requests:
|
| 348 |
-
del self.pending_requests[message.message_id]
|
| 349 |
-
raise RuntimeError("LLM Agent queue is full")
|
| 350 |
-
|
| 351 |
-
async def chat(self, messages: List[Dict[str, str]]) -> str:
|
| 352 |
-
"""
|
| 353 |
-
Async chat method that sends message via queue and returns response string.
|
| 354 |
-
This is the main method you should use.
|
| 355 |
-
"""
|
| 356 |
-
# Create future for the response
|
| 357 |
-
loop = asyncio.get_event_loop()
|
| 358 |
-
response_future = loop.create_future()
|
| 359 |
-
def chat_callback(response: LLMResponse):
|
| 360 |
-
"""Callback when LLM responds - thread-safe"""
|
| 361 |
-
console.log(f"[bold yellow]β CHAT CALLBACK TRIGGERED![/bold yellow]")
|
| 362 |
-
if not response_future.done():
|
| 363 |
-
if response.success:
|
| 364 |
-
content = response.message.content
|
| 365 |
-
console.log(f"Callback received content: {content}...")
|
| 366 |
-
# Schedule setting the future result on the main event loop
|
| 367 |
-
loop.call_soon_threadsafe(response_future.set_result, content)
|
| 368 |
-
else:
|
| 369 |
-
console.log(f"Error in response: {response.error}")
|
| 370 |
-
error_msg = f"β Error: {response.error}"
|
| 371 |
-
loop.call_soon_threadsafe(response_future.set_result, error_msg)
|
| 372 |
-
else:
|
| 373 |
-
console.log(f"[bold red]Future already done, ignoring callback[/bold red]")
|
| 374 |
-
console.log(f"Sending message to LLM agent...")
|
| 375 |
-
# Extract the actual message content from the messages list
|
| 376 |
-
user_message = ""
|
| 377 |
-
for msg in messages:
|
| 378 |
-
if msg.get("role") == "user":
|
| 379 |
-
user_message = msg.get("content", "")
|
| 380 |
-
break
|
| 381 |
-
if not user_message.strip():
|
| 382 |
-
return ""
|
| 383 |
-
# Send message with callback using the queue system
|
| 384 |
-
try:
|
| 385 |
-
message_id = self.send_message(
|
| 386 |
-
content=user_message,
|
| 387 |
-
conversation_id="default",
|
| 388 |
-
callback=chat_callback
|
| 389 |
-
)
|
| 390 |
-
console.log(f"Message sent with ID: {message_id}, waiting for response...")
|
| 391 |
-
# Wait for the response and return it
|
| 392 |
-
try:
|
| 393 |
-
response = await asyncio.wait_for(response_future, timeout=self.timeout)
|
| 394 |
-
console.log(f"[bold green]β Chat complete! Response length: {len(response)}[/bold green]")
|
| 395 |
-
return response
|
| 396 |
-
except asyncio.TimeoutError:
|
| 397 |
-
console.log("[bold red]Response timeout[/bold red]")
|
| 398 |
-
# Clean up the pending request
|
| 399 |
-
with self.pending_requests_lock:
|
| 400 |
-
if message_id in self.pending_requests:
|
| 401 |
-
del self.pending_requests[message_id]
|
| 402 |
-
return "β Response timeout - check if LLM server is running"
|
| 403 |
-
except Exception as e:
|
| 404 |
-
console.log(f"[bold red]Error sending message: {e}[/bold red]")
|
| 405 |
-
traceback.print_exc()
|
| 406 |
-
return f"β Error sending message: {e}"
|
| 407 |
-
|
| 408 |
-
def start(self):
|
| 409 |
-
"""Start the LLM agent"""
|
| 410 |
-
if not self.is_running:
|
| 411 |
-
self.is_running = True
|
| 412 |
-
self._stop_event.clear()
|
| 413 |
-
self.processing_thread = Thread(target=self._process_queue, daemon=True)
|
| 414 |
-
self.processing_thread.start()
|
| 415 |
-
console.log("[bold green]LLM Agent started[/bold green]")
|
| 416 |
-
|
| 417 |
-
def stop(self):
|
| 418 |
-
"""Stop the LLM agent"""
|
| 419 |
-
console.log("Stopping LLM Agent...")
|
| 420 |
-
self._stop_event.set()
|
| 421 |
-
if self.processing_thread and self.processing_thread.is_alive():
|
| 422 |
-
self.processing_thread.join(timeout=10)
|
| 423 |
-
self.is_running = False
|
| 424 |
-
console.log("LLM Agent stopped")
|
| 425 |
-
|
| 426 |
-
def get_conversation_history(self, conversation_id: str = "default") -> List[LLMMessage]:
|
| 427 |
-
"""Get conversation history"""
|
| 428 |
-
return self.conversations.get(conversation_id, [])[:]
|
| 429 |
-
|
| 430 |
-
def clear_conversation(self, conversation_id: str = "default"):
|
| 431 |
-
"""Clear conversation history"""
|
| 432 |
-
if conversation_id in self.conversations:
|
| 433 |
-
del self.conversations[conversation_id]
|
| 434 |
-
|
| 435 |
-
async def _chat(self, messages: List[Dict[str, str]]) -> str:
|
| 436 |
-
return await self._generate(messages)
|
| 437 |
-
|
| 438 |
-
@staticmethod
|
| 439 |
-
async def openai_generate(messages: List[Dict[str, str]], max_tokens: int = 8096, temperature: float = 0.4, model: str = DEFAULT_MODEL_ID,tools=None) -> str:
|
| 440 |
-
"""Static method for generating responses using OpenAI API"""
|
| 441 |
-
try:
|
| 442 |
-
resp = await BASE_CLIENT.chat.completions.create(
|
| 443 |
-
model=model,
|
| 444 |
-
messages=messages,
|
| 445 |
-
temperature=temperature,
|
| 446 |
-
max_tokens=max_tokens,
|
| 447 |
-
tools=tools
|
| 448 |
-
)
|
| 449 |
-
response_text = resp.choices[0].message.content or ""
|
| 450 |
-
return response_text
|
| 451 |
-
except Exception as e:
|
| 452 |
-
console.log(f"[bold red]Error in openai_generate: {e}[/bold red]")
|
| 453 |
-
return f"[LLM_Agent Error - openai_generate: {str(e)}]"
|
| 454 |
-
|
| 455 |
-
async def _call_(self, messages: List[Dict[str, str]]) -> str:
|
| 456 |
-
"""Internal call method using instance client"""
|
| 457 |
-
try:
|
| 458 |
-
resp = await self.async_client.chat.completions.create(
|
| 459 |
-
model=self.model_id,
|
| 460 |
-
messages=messages,
|
| 461 |
-
temperature=self.temperature,
|
| 462 |
-
max_tokens=self.max_tokens
|
| 463 |
-
)
|
| 464 |
-
response_text = resp.choices[0].message.content or ""
|
| 465 |
-
return response_text
|
| 466 |
-
except Exception as e:
|
| 467 |
-
console.log(f"[bold red]Error in _call_: {e}[/bold red]")
|
| 468 |
-
return f"[LLM_Agent Error - _call_: {str(e)}]"
|
| 469 |
-
|
| 470 |
-
@staticmethod
|
| 471 |
-
def CreateClient(base_url: str, api_key: str) -> AsyncOpenAI:
|
| 472 |
-
'''Create async OpenAI Client required for multi tasking'''
|
| 473 |
-
return AsyncOpenAI(
|
| 474 |
-
base_url=base_url,
|
| 475 |
-
api_key=api_key
|
| 476 |
-
)
|
| 477 |
-
|
| 478 |
-
@staticmethod
|
| 479 |
-
async def fetch_available_models(base_url: str, api_key: str) -> List[str]:
|
| 480 |
-
"""Fetches available models from the OpenAI API."""
|
| 481 |
-
try:
|
| 482 |
-
async_client = AsyncOpenAI(base_url=base_url, api_key=api_key)
|
| 483 |
-
models = await async_client.models.list()
|
| 484 |
-
model_choices = [model.id for model in models.data]
|
| 485 |
-
return model_choices
|
| 486 |
-
except Exception as e:
|
| 487 |
-
console.log(f"[bold red]LLM_Agent Error fetching models: {e}[/bold red]")
|
| 488 |
-
return ["LLM_Agent Error fetching models"]
|
| 489 |
-
|
| 490 |
-
def get_models(self) -> List[str]:
|
| 491 |
-
"""Get available models using instance credentials"""
|
| 492 |
-
return asyncio.run(self.fetch_available_models(self.base_url, self.api_key))
|
| 493 |
|
| 494 |
-
|
| 495 |
-
"""Get current queue size"""
|
| 496 |
-
return self.request_queue.qsize()
|
| 497 |
-
|
| 498 |
-
def get_pending_requests_count(self) -> int:
|
| 499 |
-
"""Get number of pending requests"""
|
| 500 |
-
with self.pending_requests_lock:
|
| 501 |
-
return len(self.pending_requests)
|
| 502 |
-
|
| 503 |
-
def get_status(self) -> Dict[str, Any]:
|
| 504 |
-
"""Get agent status information"""
|
| 505 |
-
return {
|
| 506 |
-
"is_running": self.is_running,
|
| 507 |
-
"queue_size": self.get_queue_size(),
|
| 508 |
-
"pending_requests": self.get_pending_requests_count(),
|
| 509 |
-
"conversations_count": len(self.conversations),
|
| 510 |
-
"model": self.model_id
|
| 511 |
-
}
|
| 512 |
|
| 513 |
-
# ---
|
| 514 |
@dataclass
|
| 515 |
class CanvasArtifact:
|
| 516 |
id: str
|
|
@@ -520,365 +48,31 @@ class CanvasArtifact:
|
|
| 520 |
timestamp: float
|
| 521 |
metadata: Dict[str, Any]
|
| 522 |
|
| 523 |
-
class EnhancedLLMAgent(LLMAgent):
|
| 524 |
-
def __init__(self, *args, **kwargs):
|
| 525 |
-
super().__init__(*args, **kwargs)
|
| 526 |
-
# Enhanced canvas management
|
| 527 |
-
self.canvas_artifacts: Dict[str, List[CanvasArtifact]] = {}
|
| 528 |
-
|
| 529 |
-
def add_artifact_to_canvas(self, conversation_id: str, content: str, artifact_type: str = "code", title: str = None):
|
| 530 |
-
if conversation_id not in self.canvas_artifacts:
|
| 531 |
-
self.canvas_artifacts[conversation_id] = []
|
| 532 |
-
artifact = CanvasArtifact(
|
| 533 |
-
id=str(uuid.uuid4())[:8],
|
| 534 |
-
type=artifact_type,
|
| 535 |
-
content=content,
|
| 536 |
-
title=title or f"{artifact_type}_{len(self.canvas_artifacts[conversation_id]) + 1}",
|
| 537 |
-
timestamp=time.time(),
|
| 538 |
-
metadata={"conversation_id": conversation_id}
|
| 539 |
-
)
|
| 540 |
-
self.canvas_artifacts[conversation_id].append(artifact)
|
| 541 |
-
return artifact
|
| 542 |
-
|
| 543 |
-
def get_canvas_context(self, conversation_id: str) -> str:
|
| 544 |
-
if conversation_id not in self.canvas_artifacts or not self.canvas_artifacts[conversation_id]:
|
| 545 |
-
return ""
|
| 546 |
-
context_lines = ["\n=== COLLABORATIVE CANVAS ARTIFACTS ==="]
|
| 547 |
-
for artifact in self.canvas_artifacts[conversation_id][-10:]: # Last 10 artifacts
|
| 548 |
-
context_lines.append(f"\n--- {artifact.title} [{artifact.type.upper()}] ---")
|
| 549 |
-
context_lines.append(artifact.content[:500] + "..." if len(artifact.content) > 500 else artifact.content)
|
| 550 |
-
return "\n".join(context_lines) + "\n=================================\n"
|
| 551 |
-
|
| 552 |
-
def _extract_artifacts_to_canvas(self, response: str, conversation_id: str):
|
| 553 |
-
code_blocks = re.findall(r'```(?:\w+)?\n(.*?)```', response, re.DOTALL)
|
| 554 |
-
for code_block in code_blocks:
|
| 555 |
-
if len(code_block.strip()) > 10:
|
| 556 |
-
lang_match = re.search(r'```(\w+)', response)
|
| 557 |
-
lang = lang_match.group(1).lower() if lang_match else "python"
|
| 558 |
-
self.add_artifact_to_canvas(
|
| 559 |
-
conversation_id,
|
| 560 |
-
code_block.strip(),
|
| 561 |
-
"code",
|
| 562 |
-
f"Extracted Code ({lang})"
|
| 563 |
-
)
|
| 564 |
-
|
| 565 |
-
def get_canvas_summary(self, conversation_id: str) -> List[Dict]:
|
| 566 |
-
if conversation_id not in self.canvas_artifacts:
|
| 567 |
-
return []
|
| 568 |
-
return [
|
| 569 |
-
{
|
| 570 |
-
"id": artifact.id,
|
| 571 |
-
"type": artifact.type.upper(),
|
| 572 |
-
"title": artifact.title,
|
| 573 |
-
"preview": artifact.content[:100] + "..." if len(artifact.content) > 100 else artifact.content,
|
| 574 |
-
"timestamp": time.strftime("%H:%M", time.localtime(artifact.timestamp))
|
| 575 |
-
}
|
| 576 |
-
for artifact in reversed(self.canvas_artifacts[conversation_id]) # Newest first
|
| 577 |
-
]
|
| 578 |
-
|
| 579 |
-
def get_artifact_by_id(self, conversation_id: str, artifact_id: str):
|
| 580 |
-
if conversation_id not in self.canvas_artifacts:
|
| 581 |
-
return None
|
| 582 |
-
for artifact in self.canvas_artifacts[conversation_id]:
|
| 583 |
-
if artifact.id == artifact_id:
|
| 584 |
-
return artifact
|
| 585 |
-
return None
|
| 586 |
-
|
| 587 |
-
def clear_canvas(self, conversation_id: str = "default"):
|
| 588 |
-
if conversation_id in self.canvas_artifacts:
|
| 589 |
-
self.canvas_artifacts[conversation_id] = []
|
| 590 |
-
|
| 591 |
-
async def chat_with_canvas(self, message: str, conversation_id: str = "default", include_canvas: bool = True) -> str:
|
| 592 |
-
"""Enhanced chat that includes canvas context"""
|
| 593 |
-
# Build messages with system prompt and canvas context
|
| 594 |
-
messages = [{"role": "system", "content": self.system_prompt}]
|
| 595 |
-
|
| 596 |
-
# Include canvas context if requested
|
| 597 |
-
if include_canvas:
|
| 598 |
-
canvas_context = self.get_canvas_context(conversation_id)
|
| 599 |
-
if canvas_context:
|
| 600 |
-
messages.append({"role": "system", "content": f"Current collaborative canvas state:\n{canvas_context}"})
|
| 601 |
-
|
| 602 |
-
# Add conversation history
|
| 603 |
-
for msg in self.conversations.get(conversation_id, [])[-self.max_history_length:]:
|
| 604 |
-
messages.append({"role": msg.role, "content": msg.content})
|
| 605 |
-
|
| 606 |
-
# Add current message
|
| 607 |
-
messages.append({"role": "user", "content": message})
|
| 608 |
-
|
| 609 |
-
try:
|
| 610 |
-
response = await self._call_(messages)
|
| 611 |
-
|
| 612 |
-
# Update conversation history
|
| 613 |
-
user_msg = LLMMessage(role="user", content=message, conversation_id=conversation_id)
|
| 614 |
-
self._add_to_conversation_history(conversation_id, user_msg)
|
| 615 |
-
|
| 616 |
-
response_msg = LLMMessage(role="assistant", content=response, conversation_id=conversation_id)
|
| 617 |
-
self._add_to_conversation_history(conversation_id, response_msg)
|
| 618 |
-
|
| 619 |
-
# Auto-extract and add code artifacts to canvas
|
| 620 |
-
self._extract_artifacts_to_canvas(response, conversation_id)
|
| 621 |
-
|
| 622 |
-
return response
|
| 623 |
-
|
| 624 |
-
except Exception as e:
|
| 625 |
-
error_msg = f"Error in chat_with_canvas: {str(e)}"
|
| 626 |
-
console.log(f"[red]{error_msg}[/red]")
|
| 627 |
-
return error_msg
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
# --- Enhanced LLMAgent with Canvas Support ---
|
| 632 |
-
class AI_Agent:
|
| 633 |
-
def __init__(self, model_id: str, system_prompt: str = "You are a helpful assistant. Respond concisely in 1-2 sentences.", history: List[Dict] = None):
|
| 634 |
-
self.model_id = model_id
|
| 635 |
-
self.system_prompt = system_prompt
|
| 636 |
-
self.history = history or []
|
| 637 |
-
self.conversation_id = f"conv_{uuid.uuid4().hex[:8]}"
|
| 638 |
-
|
| 639 |
-
# Create agent instance
|
| 640 |
-
self.client = LLMAgent(
|
| 641 |
-
model_id=model_id,
|
| 642 |
-
system_prompt=self.system_prompt,
|
| 643 |
-
generate_fn=LLMAgent.openai_generate
|
| 644 |
-
)
|
| 645 |
-
|
| 646 |
-
console.log(f"[bold green]β MyAgent initialized with model: {model_id}[/bold green]")
|
| 647 |
-
|
| 648 |
-
async def call_llm(self, messages: List[Dict], use_history: bool = True) -> str:
|
| 649 |
-
"""
|
| 650 |
-
Send messages to LLM and get response
|
| 651 |
-
Args:
|
| 652 |
-
messages: List of message dicts with 'role' and 'content'
|
| 653 |
-
use_history: Whether to include conversation history
|
| 654 |
-
Returns:
|
| 655 |
-
str: LLM response
|
| 656 |
-
"""
|
| 657 |
-
try:
|
| 658 |
-
console.log(f"[bold yellow]Sending {len(messages)} messages to LLM (use_history: {use_history})...[/bold yellow]")
|
| 659 |
-
|
| 660 |
-
# Enhance messages based on history setting
|
| 661 |
-
enhanced_messages = await self._enhance_messages(messages, use_history)
|
| 662 |
-
|
| 663 |
-
response = await self.client.chat(enhanced_messages)
|
| 664 |
-
console.log(f"[bold green]β Response received ({len(response)} chars)[/bold green]")
|
| 665 |
-
|
| 666 |
-
# Update conversation history ONLY if we're using history
|
| 667 |
-
if use_history:
|
| 668 |
-
self._update_history(messages, response)
|
| 669 |
-
|
| 670 |
-
return response
|
| 671 |
-
|
| 672 |
-
except Exception as e:
|
| 673 |
-
console.log(f"[bold red]β ERROR: {e}[/bold red]")
|
| 674 |
-
traceback.print_exc()
|
| 675 |
-
return f"Error: {str(e)}"
|
| 676 |
-
|
| 677 |
-
async def _enhance_messages(self, messages: List[Dict], use_history: bool) -> List[Dict]:
|
| 678 |
-
"""Enhance messages with system prompt and optional history"""
|
| 679 |
-
enhanced = []
|
| 680 |
-
|
| 681 |
-
# Add system prompt if not already in messages
|
| 682 |
-
has_system = any(msg.get('role') == 'system' for msg in messages)
|
| 683 |
-
if not has_system and self.system_prompt:
|
| 684 |
-
enhanced.append({"role": "system", "content": self.system_prompt})
|
| 685 |
-
|
| 686 |
-
# Add conversation history only if requested
|
| 687 |
-
if use_history and self.history:
|
| 688 |
-
enhanced.extend(self.history[-10:]) # Last 10 messages for context
|
| 689 |
-
|
| 690 |
-
# Add current messages
|
| 691 |
-
enhanced.extend(messages)
|
| 692 |
-
|
| 693 |
-
return enhanced
|
| 694 |
-
|
| 695 |
-
def _update_history(self, messages: List[Dict], response: str):
|
| 696 |
-
"""Update conversation history with new exchange"""
|
| 697 |
-
# Add user messages to history
|
| 698 |
-
for msg in messages:
|
| 699 |
-
if msg.get('role') in ['user', 'assistant']:
|
| 700 |
-
self.history.append(msg)
|
| 701 |
-
|
| 702 |
-
# Add assistant response to history
|
| 703 |
-
self.history.append({"role": "assistant", "content": response})
|
| 704 |
-
|
| 705 |
-
# Keep history manageable (last 20 exchanges)
|
| 706 |
-
if len(self.history) > 40: # 20 user + 20 assistant messages
|
| 707 |
-
self.history = self.history[-40:]
|
| 708 |
-
|
| 709 |
-
async def simple_query(self, query: str) -> str:
|
| 710 |
-
"""Simple one-shot query method - NO history/context"""
|
| 711 |
-
messages = [{"role": "user", "content": query}]
|
| 712 |
-
return await self.call_llm(messages, use_history=False)
|
| 713 |
-
|
| 714 |
-
async def multi_turn_chat(self, user_input: str) -> str:
|
| 715 |
-
"""Multi-turn chat that maintains context across calls"""
|
| 716 |
-
messages = [{"role": "user", "content": user_input}]
|
| 717 |
-
response = await self.call_llm(messages, use_history=True)
|
| 718 |
-
return response
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
def get_conversation_summary(self) -> Dict:
|
| 722 |
-
"""Get conversation summary"""
|
| 723 |
-
return {
|
| 724 |
-
"conversation_id": self.conversation_id,
|
| 725 |
-
"total_messages": len(self.history),
|
| 726 |
-
"user_messages": len([msg for msg in self.history if msg.get('role') == 'user']),
|
| 727 |
-
"assistant_messages": len([msg for msg in self.history if msg.get('role') == 'assistant']),
|
| 728 |
-
"recent_exchanges": self.history[-4:] if self.history else []
|
| 729 |
-
}
|
| 730 |
-
|
| 731 |
-
def clear_history(self):
|
| 732 |
-
"""Clear conversation history"""
|
| 733 |
-
self.history.clear()
|
| 734 |
-
console.log("[bold yellow]Conversation history cleared[/bold yellow]")
|
| 735 |
-
|
| 736 |
-
def update_system_prompt(self, new_prompt: str):
|
| 737 |
-
"""Update the system prompt"""
|
| 738 |
-
self.system_prompt = new_prompt
|
| 739 |
-
console.log(f"[bold blue]System prompt updated[/bold blue]")
|
| 740 |
-
|
| 741 |
-
def stop(self):
|
| 742 |
-
"""Stop the client gracefully"""
|
| 743 |
-
if hasattr(self, 'client') and self.client:
|
| 744 |
-
self.client.stop()
|
| 745 |
-
console.log("[bold yellow]MyAgent client stopped[/bold yellow]")
|
| 746 |
-
async def contextual_query(self, query: str, context_messages: List[Dict] = None,
|
| 747 |
-
context_text: str = None, context_files: List[str] = None) -> str:
|
| 748 |
-
"""
|
| 749 |
-
Query with specific context but doesn't update main history
|
| 750 |
-
|
| 751 |
-
Args:
|
| 752 |
-
query: The user question
|
| 753 |
-
context_messages: List of message dicts for context
|
| 754 |
-
context_text: Plain text context (will be converted to system message)
|
| 755 |
-
context_files: List of file paths to read and include as context
|
| 756 |
-
"""
|
| 757 |
-
messages = []
|
| 758 |
-
|
| 759 |
-
# Add system prompt
|
| 760 |
-
if self.system_prompt:
|
| 761 |
-
messages.append({"role": "system", "content": self.system_prompt})
|
| 762 |
-
|
| 763 |
-
# Handle different context types
|
| 764 |
-
if context_messages:
|
| 765 |
-
messages.extend(context_messages)
|
| 766 |
-
|
| 767 |
-
if context_text:
|
| 768 |
-
messages.append({"role": "system", "content": f"Additional context: {context_text}"})
|
| 769 |
-
|
| 770 |
-
if context_files:
|
| 771 |
-
file_context = await self._read_files_context(context_files)
|
| 772 |
-
if file_context:
|
| 773 |
-
messages.append({"role": "system", "content": f"File contents:\n{file_context}"})
|
| 774 |
-
|
| 775 |
-
# Add the actual query
|
| 776 |
-
messages.append({"role": "user", "content": query})
|
| 777 |
-
|
| 778 |
-
return await self.call_llm(messages, use_history=False)
|
| 779 |
-
|
| 780 |
-
async def _read_files_context(self, file_paths: List[str]) -> str:
|
| 781 |
-
"""Read multiple files and return as context string"""
|
| 782 |
-
contexts = []
|
| 783 |
-
for file_path in file_paths:
|
| 784 |
-
try:
|
| 785 |
-
if os.path.exists(file_path):
|
| 786 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
| 787 |
-
content = f.read()
|
| 788 |
-
contexts.append(f"--- {os.path.basename(file_path)} ---\n{content}")
|
| 789 |
-
else:
|
| 790 |
-
console.log(f"[bold yellow]File not found: {file_path}[/bold yellow]")
|
| 791 |
-
except Exception as e:
|
| 792 |
-
console.log(f"[bold red]Error reading file {file_path}: {e}[/bold red]")
|
| 793 |
-
|
| 794 |
-
return "\n\n".join(contexts) if contexts else ""
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
async def query_with_code_context(self, query: str, code_snippets: List[str] = None,
|
| 798 |
-
code_files: List[str] = None) -> str:
|
| 799 |
-
"""
|
| 800 |
-
Specialized contextual query for code-related questions
|
| 801 |
-
"""
|
| 802 |
-
code_context = "CODE CONTEXT:\n"
|
| 803 |
-
|
| 804 |
-
if code_snippets:
|
| 805 |
-
for i, snippet in enumerate(code_snippets, 1):
|
| 806 |
-
code_context += f"\nSnippet {i}:\n```\n{snippet}\n```\n"
|
| 807 |
-
|
| 808 |
-
if code_files:
|
| 809 |
-
# Read code files and include them
|
| 810 |
-
for file_path in code_files:
|
| 811 |
-
if file_path.endswith(('.py', '.js', '.java', '.cpp', '.c', '.html', '.css')):
|
| 812 |
-
code_context += f"\nFile: {file_path}\n```\n"
|
| 813 |
-
try:
|
| 814 |
-
with open(file_path, 'r') as f:
|
| 815 |
-
code_context += f.read()
|
| 816 |
-
except Exception as e:
|
| 817 |
-
code_context += f"Error reading file: {e}"
|
| 818 |
-
code_context += "\n```\n"
|
| 819 |
-
|
| 820 |
-
return await self.contextual_query(query, context_text=code_context)
|
| 821 |
-
|
| 822 |
-
async def multi_context_query(self, query: str, contexts: Dict[str, Any]) -> str:
|
| 823 |
-
"""
|
| 824 |
-
Advanced contextual query with multiple context types
|
| 825 |
-
|
| 826 |
-
Args:
|
| 827 |
-
query: The user question
|
| 828 |
-
contexts: Dict with various context types
|
| 829 |
-
- 'messages': List of message dicts
|
| 830 |
-
- 'text': Plain text context
|
| 831 |
-
- 'files': List of file paths
|
| 832 |
-
- 'urls': List of URLs
|
| 833 |
-
- 'code': List of code snippets or files
|
| 834 |
-
- 'metadata': Any additional metadata
|
| 835 |
-
"""
|
| 836 |
-
all_context_messages = []
|
| 837 |
-
|
| 838 |
-
# Build context from different sources
|
| 839 |
-
if contexts.get('text'):
|
| 840 |
-
all_context_messages.append({"role": "system", "content": f"Context: {contexts['text']}"})
|
| 841 |
-
|
| 842 |
-
if contexts.get('messages'):
|
| 843 |
-
all_context_messages.extend(contexts['messages'])
|
| 844 |
-
|
| 845 |
-
if contexts.get('files'):
|
| 846 |
-
file_context = await self._read_files_context(contexts['files'])
|
| 847 |
-
if file_context:
|
| 848 |
-
all_context_messages.append({"role": "system", "content": f"File Contents:\n{file_context}"})
|
| 849 |
-
|
| 850 |
-
if contexts.get('code'):
|
| 851 |
-
code_context = "\n".join([f"Code snippet {i}:\n```\n{code}\n```"
|
| 852 |
-
for i, code in enumerate(contexts['code'], 1)])
|
| 853 |
-
all_context_messages.append({"role": "system", "content": f"Code Context:\n{code_context}"})
|
| 854 |
-
|
| 855 |
-
if contexts.get('metadata'):
|
| 856 |
-
all_context_messages.append({"role": "system", "content": f"Metadata: {contexts['metadata']}"})
|
| 857 |
-
|
| 858 |
-
return await self.contextual_query(query, context_messages=all_context_messages)
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
# --- Enhanced LLMAgent with Canvas Support ---
|
| 862 |
-
@dataclass
|
| 863 |
-
class CanvasArtifact:
|
| 864 |
-
id: str
|
| 865 |
-
type: str # 'code', 'diagram', 'text', 'image'
|
| 866 |
-
content: str
|
| 867 |
-
title: str
|
| 868 |
-
timestamp: float
|
| 869 |
-
metadata: Dict[str, Any]
|
| 870 |
-
|
| 871 |
class EnhancedLLMAgent:
|
| 872 |
-
def __init__(self, model_id: str =
|
| 873 |
-
base_url: str =
|
|
|
|
|
|
|
|
|
|
| 874 |
self.model_id = model_id
|
| 875 |
self.system_prompt = system_prompt or """You are an advanced AI development assistant operating in a Star Trek LCARS interface.
|
| 876 |
You specialize in code generation, analysis, and collaborative development.
|
| 877 |
Always provide practical, executable code solutions when appropriate.
|
| 878 |
Format code responses clearly with proper markdown code blocks and explain your reasoning."""
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 882 |
|
| 883 |
# Enhanced conversation and canvas management
|
| 884 |
self.conversations: Dict[str, List[Dict]] = {}
|
|
@@ -890,20 +84,28 @@ class EnhancedLLMAgent:
|
|
| 890 |
self.tts_engine = pyttsx3.init()
|
| 891 |
self.setup_tts()
|
| 892 |
self.speech_enabled = True
|
|
|
|
| 893 |
except Exception as e:
|
| 894 |
-
console.log(f"[
|
| 895 |
self.speech_enabled = False
|
| 896 |
-
|
| 897 |
-
console.log("[bold green]π Enhanced LLM Agent Initialized[/bold green]")
|
| 898 |
|
| 899 |
def setup_tts(self):
|
| 900 |
"""Configure text-to-speech engine"""
|
| 901 |
-
|
| 902 |
voices = self.tts_engine.getProperty('voices')
|
| 903 |
if voices:
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 907 |
|
| 908 |
def speak(self, text: str):
|
| 909 |
"""Convert text to speech in a non-blocking way"""
|
|
@@ -912,43 +114,79 @@ class EnhancedLLMAgent:
|
|
| 912 |
|
| 913 |
def _speak():
|
| 914 |
try:
|
| 915 |
-
# Clean text for speech
|
| 916 |
clean_text = re.sub(r'```.*?```', '', text, flags=re.DOTALL)
|
| 917 |
clean_text = re.sub(r'`.*?`', '', clean_text)
|
|
|
|
|
|
|
| 918 |
clean_text = clean_text.strip()
|
| 919 |
-
|
| 920 |
-
|
|
|
|
|
|
|
| 921 |
self.tts_engine.runAndWait()
|
| 922 |
-
else:
|
| 923 |
-
self.tts_engine.say(text) # Limit length
|
| 924 |
-
self.tts_engine.runAndWait()
|
| 925 |
except Exception as e:
|
| 926 |
console.log(f"[red]TTS Error: {e}[/red]")
|
| 927 |
|
| 928 |
thread = threading.Thread(target=_speak, daemon=True)
|
| 929 |
thread.start()
|
| 930 |
|
| 931 |
-
def
|
| 932 |
-
"""
|
| 933 |
try:
|
| 934 |
-
self.
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 949 |
except Exception as e:
|
| 950 |
-
|
| 951 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 952 |
|
| 953 |
def add_artifact_to_canvas(self, conversation_id: str, content: str, artifact_type: str = "code", title: str = None):
|
| 954 |
"""Add artifacts to the collaborative canvas"""
|
|
@@ -974,7 +212,7 @@ class EnhancedLLMAgent:
|
|
| 974 |
return ""
|
| 975 |
|
| 976 |
context_lines = ["\n=== COLLABORATIVE CANVAS ARTIFACTS ==="]
|
| 977 |
-
for artifact in self.canvas_artifacts[conversation_id][-10:]:
|
| 978 |
context_lines.append(f"\n--- {artifact.title} [{artifact.type.upper()}] ---")
|
| 979 |
preview = artifact.content[:500] + "..." if len(artifact.content) > 500 else artifact.content
|
| 980 |
context_lines.append(preview)
|
|
@@ -982,7 +220,7 @@ class EnhancedLLMAgent:
|
|
| 982 |
return "\n".join(context_lines) + "\n=================================\n"
|
| 983 |
|
| 984 |
async def chat_with_canvas(self, message: str, conversation_id: str = "default", include_canvas: bool = True) -> str:
|
| 985 |
-
"""Enhanced chat that
|
| 986 |
if conversation_id not in self.conversations:
|
| 987 |
self.conversations[conversation_id] = []
|
| 988 |
|
|
@@ -1003,16 +241,10 @@ class EnhancedLLMAgent:
|
|
| 1003 |
messages.append({"role": "user", "content": message})
|
| 1004 |
|
| 1005 |
try:
|
| 1006 |
-
|
| 1007 |
-
|
| 1008 |
-
|
| 1009 |
-
|
| 1010 |
-
messages=messages,
|
| 1011 |
-
temperature=0.7,
|
| 1012 |
-
max_tokens=DEFAULT_MAX_TOKENS
|
| 1013 |
-
)
|
| 1014 |
-
|
| 1015 |
-
response_text = response.choices[0].message.content
|
| 1016 |
|
| 1017 |
# Update conversation history
|
| 1018 |
self.conversations[conversation_id].extend([
|
|
@@ -1032,11 +264,9 @@ class EnhancedLLMAgent:
|
|
| 1032 |
|
| 1033 |
def _extract_artifacts_to_canvas(self, response: str, conversation_id: str):
|
| 1034 |
"""Automatically extract code blocks and add to canvas"""
|
| 1035 |
-
# Find all code blocks with optional language specification
|
| 1036 |
code_blocks = re.findall(r'```(?:\w+)?\n(.*?)```', response, re.DOTALL)
|
| 1037 |
for i, code_block in enumerate(code_blocks):
|
| 1038 |
-
if len(code_block.strip()) > 10:
|
| 1039 |
-
# Try to detect language from the code block marker
|
| 1040 |
lang_match = re.search(r'```(\w+)\n', response)
|
| 1041 |
lang = lang_match.group(1) if lang_match else "unknown"
|
| 1042 |
|
|
@@ -1065,7 +295,7 @@ class EnhancedLLMAgent:
|
|
| 1065 |
return []
|
| 1066 |
|
| 1067 |
artifacts = []
|
| 1068 |
-
for artifact in reversed(self.canvas_artifacts[conversation_id]):
|
| 1069 |
artifacts.append({
|
| 1070 |
"id": artifact.id,
|
| 1071 |
"type": artifact.type.upper(),
|
|
@@ -1086,20 +316,6 @@ class EnhancedLLMAgent:
|
|
| 1086 |
return artifact
|
| 1087 |
return None
|
| 1088 |
|
| 1089 |
-
@staticmethod
|
| 1090 |
-
async def fetch_available_models(base_url: str, api_key: str) -> List[str]:
|
| 1091 |
-
"""Fetch available models from the API"""
|
| 1092 |
-
try:
|
| 1093 |
-
console.log(f"[blue]Fetching models from {base_url}[/blue]")
|
| 1094 |
-
async_client = AsyncOpenAI(base_url=base_url, api_key=api_key)
|
| 1095 |
-
models = await async_client.models.list()
|
| 1096 |
-
model_list = [model.id for model in models.data]
|
| 1097 |
-
console.log(f"[green]Found {len(model_list)} models[/green]")
|
| 1098 |
-
return model_list
|
| 1099 |
-
except Exception as e:
|
| 1100 |
-
console.log(f"[red]Error fetching models: {e}[/red]")
|
| 1101 |
-
return ["default-model"]
|
| 1102 |
-
|
| 1103 |
def update_config(self, base_url: str, api_key: str, model_id: str, temperature: float, max_tokens: int):
|
| 1104 |
"""Update agent configuration"""
|
| 1105 |
self.base_url = base_url
|
|
@@ -1107,16 +323,36 @@ class EnhancedLLMAgent:
|
|
| 1107 |
self.model_id = model_id
|
| 1108 |
console.log(f"[blue]Updated config: {model_id} @ {base_url}[/blue]")
|
| 1109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1110 |
# --- LCARS Styled Gradio Interface ---
|
| 1111 |
class LcarsInterface:
|
| 1112 |
-
def __init__(self
|
| 1113 |
-
|
|
|
|
|
|
|
| 1114 |
self.current_conversation = "default"
|
| 1115 |
|
| 1116 |
def create_interface(self):
|
| 1117 |
"""Create the full LCARS-styled interface"""
|
| 1118 |
|
| 1119 |
-
# Enhanced LCARS CSS with proper Star Trek styling
|
| 1120 |
lcars_css = """
|
| 1121 |
:root {
|
| 1122 |
--lcars-orange: #FF9900;
|
|
@@ -1157,166 +393,87 @@ class LcarsInterface:
|
|
| 1157 |
border-radius: 0 60px 0 0;
|
| 1158 |
margin: -20px -20px 20px -20px;
|
| 1159 |
border-bottom: 6px solid var(--lcars-blue);
|
| 1160 |
-
box-shadow: 0 4px 20px rgba(255, 153, 0, 0.3);
|
| 1161 |
}
|
| 1162 |
|
| 1163 |
.lcars-title {
|
| 1164 |
-
font-size:
|
| 1165 |
font-weight: bold;
|
| 1166 |
color: var(--lcars-black);
|
| 1167 |
-
text-shadow: 3px 3px 6px rgba(255, 255, 255, 0.4);
|
| 1168 |
margin: 0;
|
| 1169 |
-
letter-spacing: 2px;
|
| 1170 |
}
|
| 1171 |
|
| 1172 |
.lcars-subtitle {
|
| 1173 |
-
font-size: 1.
|
| 1174 |
color: var(--lcars-black);
|
| 1175 |
margin: 10px 0 0 0;
|
| 1176 |
-
font-weight: bold;
|
| 1177 |
}
|
| 1178 |
|
| 1179 |
.lcars-panel {
|
| 1180 |
-
background:
|
| 1181 |
-
border:
|
| 1182 |
-
border-radius: 0
|
| 1183 |
-
padding:
|
| 1184 |
-
margin-bottom:
|
| 1185 |
-
box-shadow: 0 4px 15px rgba(255, 153, 0, 0.2);
|
| 1186 |
}
|
| 1187 |
|
| 1188 |
.lcars-button {
|
| 1189 |
-
background:
|
| 1190 |
color: var(--lcars-black) !important;
|
| 1191 |
border: none !important;
|
| 1192 |
-
border-radius: 0
|
| 1193 |
-
padding:
|
| 1194 |
font-family: inherit !important;
|
| 1195 |
font-weight: bold !important;
|
| 1196 |
-
|
| 1197 |
-
cursor: pointer !important;
|
| 1198 |
-
transition: all 0.3s ease !important;
|
| 1199 |
-
margin: 8px !important;
|
| 1200 |
-
box-shadow: 0 4px 8px rgba(255, 153, 0, 0.3) !important;
|
| 1201 |
}
|
| 1202 |
|
| 1203 |
.lcars-button:hover {
|
| 1204 |
-
background:
|
| 1205 |
-
transform: translateY(-2px) !important;
|
| 1206 |
-
box-shadow: 0 6px 12px rgba(255, 153, 0, 0.4) !important;
|
| 1207 |
}
|
| 1208 |
|
| 1209 |
.lcars-input {
|
| 1210 |
background: var(--lcars-black) !important;
|
| 1211 |
color: var(--lcars-orange) !important;
|
| 1212 |
border: 2px solid var(--lcars-blue) !important;
|
| 1213 |
-
border-radius: 0
|
| 1214 |
-
padding:
|
| 1215 |
-
font-family: inherit !important;
|
| 1216 |
-
font-size: 1.1em !important;
|
| 1217 |
}
|
| 1218 |
|
| 1219 |
.lcars-chatbot {
|
| 1220 |
background: var(--lcars-black) !important;
|
| 1221 |
-
border:
|
| 1222 |
-
border-radius: 0 20px 0 20px !important;
|
| 1223 |
-
min-height: 400px;
|
| 1224 |
-
max-height: 500px;
|
| 1225 |
-
}
|
| 1226 |
-
|
| 1227 |
-
.lcars-code-editor {
|
| 1228 |
-
background: var(--lcars-black) !important;
|
| 1229 |
-
color: var(--lcars-pale-blue) !important;
|
| 1230 |
-
border: 3px solid var(--lcars-blue) !important;
|
| 1231 |
-
border-radius: 0 20px 0 20px !important;
|
| 1232 |
-
font-family: 'Fira Code', 'Courier New', monospace !important;
|
| 1233 |
-
font-size: 1em !important;
|
| 1234 |
-
}
|
| 1235 |
-
|
| 1236 |
-
.user-message {
|
| 1237 |
-
background: linear-gradient(135deg, rgba(102, 153, 255, 0.2), rgba(51, 102, 204, 0.2)) !important;
|
| 1238 |
-
border-left: 6px solid var(--lcars-blue) !important;
|
| 1239 |
-
padding: 12px !important;
|
| 1240 |
-
margin: 8px 0 !important;
|
| 1241 |
-
border-radius: 0 15px 0 15px !important;
|
| 1242 |
-
}
|
| 1243 |
-
|
| 1244 |
-
.assistant-message {
|
| 1245 |
-
background: linear-gradient(135deg, rgba(255, 153, 0, 0.2), rgba(255, 102, 0, 0.2)) !important;
|
| 1246 |
-
border-left: 6px solid var(--lcars-orange) !important;
|
| 1247 |
-
padding: 12px !important;
|
| 1248 |
-
margin: 8px 0 !important;
|
| 1249 |
border-radius: 0 15px 0 15px !important;
|
| 1250 |
}
|
| 1251 |
|
| 1252 |
-
.artifact-item {
|
| 1253 |
-
background: linear-gradient(135deg, rgba(204, 153, 255, 0.15), rgba(153, 102, 204, 0.15));
|
| 1254 |
-
border: 2px solid var(--lcars-purple);
|
| 1255 |
-
padding: 10px;
|
| 1256 |
-
margin: 6px 0;
|
| 1257 |
-
border-radius: 0 12px 0 12px;
|
| 1258 |
-
cursor: pointer;
|
| 1259 |
-
transition: all 0.3s ease;
|
| 1260 |
-
}
|
| 1261 |
-
|
| 1262 |
-
.artifact-item:hover {
|
| 1263 |
-
background: linear-gradient(135deg, rgba(204, 153, 255, 0.3), rgba(153, 102, 204, 0.3));
|
| 1264 |
-
transform: translateX(5px);
|
| 1265 |
-
}
|
| 1266 |
-
|
| 1267 |
.status-indicator {
|
| 1268 |
display: inline-block;
|
| 1269 |
-
width:
|
| 1270 |
-
height:
|
| 1271 |
border-radius: 50%;
|
| 1272 |
background: var(--lcars-red);
|
| 1273 |
-
margin-right:
|
| 1274 |
-
box-shadow: 0 0 10px currentColor;
|
| 1275 |
}
|
| 1276 |
|
| 1277 |
.status-online {
|
| 1278 |
background: var(--lcars-blue);
|
| 1279 |
-
animation: pulse
|
| 1280 |
}
|
| 1281 |
|
| 1282 |
@keyframes pulse {
|
| 1283 |
-
0% {
|
| 1284 |
-
50% {
|
| 1285 |
-
100% {
|
| 1286 |
-
}
|
| 1287 |
-
|
| 1288 |
-
.panel-title {
|
| 1289 |
-
color: var(--lcars-yellow) !important;
|
| 1290 |
-
font-size: 1.4em !important;
|
| 1291 |
-
font-weight: bold !important;
|
| 1292 |
-
margin-bottom: 15px !important;
|
| 1293 |
-
border-bottom: 2px solid var(--lcars-orange);
|
| 1294 |
-
padding-bottom: 8px;
|
| 1295 |
-
}
|
| 1296 |
-
|
| 1297 |
-
.gradio-accordion {
|
| 1298 |
-
border: 2px solid var(--lcars-orange) !important;
|
| 1299 |
-
border-radius: 0 20px 0 20px !important;
|
| 1300 |
-
margin-bottom: 20px !important;
|
| 1301 |
-
}
|
| 1302 |
-
|
| 1303 |
-
.gradio-accordion .label {
|
| 1304 |
-
background: linear-gradient(90deg, var(--lcars-orange), var(--lcars-red)) !important;
|
| 1305 |
-
color: var(--lcars-black) !important;
|
| 1306 |
-
font-size: 1.3em !important;
|
| 1307 |
-
font-weight: bold !important;
|
| 1308 |
-
padding: 15px 20px !important;
|
| 1309 |
}
|
| 1310 |
"""
|
| 1311 |
|
| 1312 |
with gr.Blocks(css=lcars_css, theme=gr.themes.Default(), title="LCARS Terminal") as interface:
|
| 1313 |
|
| 1314 |
with gr.Column(elem_classes="lcars-container"):
|
| 1315 |
-
# Header
|
| 1316 |
with gr.Row(elem_classes="lcars-header"):
|
| 1317 |
gr.Markdown("""
|
| 1318 |
<div style="text-align: center; width: 100%;">
|
| 1319 |
-
<div class="lcars-title">π LCARS TERMINAL
|
| 1320 |
<div class="lcars-subtitle">STARFLEET AI DEVELOPMENT CONSOLE</div>
|
| 1321 |
<div style="margin-top: 10px;">
|
| 1322 |
<span class="status-indicator status-online"></span>
|
|
@@ -1325,111 +482,108 @@ class LcarsInterface:
|
|
| 1325 |
</div>
|
| 1326 |
""")
|
| 1327 |
|
| 1328 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1329 |
with gr.Row():
|
| 1330 |
-
# Left Sidebar
|
| 1331 |
-
with gr.Column(scale=1
|
| 1332 |
# Configuration Panel
|
| 1333 |
with gr.Column(elem_classes="lcars-panel"):
|
| 1334 |
-
gr.Markdown("### π§
|
| 1335 |
|
| 1336 |
-
|
|
|
|
| 1337 |
base_url = gr.Textbox(
|
| 1338 |
-
value=
|
| 1339 |
-
label="
|
| 1340 |
elem_classes="lcars-input"
|
| 1341 |
)
|
| 1342 |
api_key = gr.Textbox(
|
| 1343 |
-
value=
|
| 1344 |
label="API Key",
|
| 1345 |
type="password",
|
| 1346 |
elem_classes="lcars-input"
|
| 1347 |
)
|
| 1348 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1349 |
with gr.Row():
|
| 1350 |
model_dropdown = gr.Dropdown(
|
| 1351 |
-
choices=[
|
| 1352 |
-
value=
|
| 1353 |
label="AI Model",
|
| 1354 |
elem_classes="lcars-input"
|
| 1355 |
)
|
| 1356 |
fetch_models_btn = gr.Button("π‘ Fetch Models", elem_classes="lcars-button")
|
| 1357 |
|
| 1358 |
with gr.Row():
|
| 1359 |
-
temperature = gr.Slider(
|
| 1360 |
-
|
| 1361 |
-
value=0.7,
|
| 1362 |
-
label="Temperature",
|
| 1363 |
-
elem_classes="lcars-input"
|
| 1364 |
-
)
|
| 1365 |
-
max_tokens = gr.Slider(
|
| 1366 |
-
128, 8192,
|
| 1367 |
-
value=2000,
|
| 1368 |
-
step=128,
|
| 1369 |
-
label="Max Tokens",
|
| 1370 |
-
elem_classes="lcars-input"
|
| 1371 |
-
)
|
| 1372 |
|
| 1373 |
with gr.Row():
|
| 1374 |
update_config_btn = gr.Button("πΎ Apply Config", elem_classes="lcars-button")
|
| 1375 |
speech_toggle = gr.Checkbox(value=True, label="π Speech Output")
|
| 1376 |
|
| 1377 |
-
# Canvas Artifacts
|
| 1378 |
with gr.Column(elem_classes="lcars-panel"):
|
| 1379 |
-
gr.Markdown("### π¨ CANVAS ARTIFACTS"
|
| 1380 |
-
artifact_display = gr.JSON(
|
| 1381 |
-
label="",
|
| 1382 |
-
elem_id="artifact-display"
|
| 1383 |
-
)
|
| 1384 |
with gr.Row():
|
| 1385 |
refresh_artifacts_btn = gr.Button("π Refresh", elem_classes="lcars-button")
|
| 1386 |
clear_canvas_btn = gr.Button("ποΈ Clear Canvas", elem_classes="lcars-button")
|
| 1387 |
|
| 1388 |
-
# Main Content
|
| 1389 |
with gr.Column(scale=2):
|
| 1390 |
-
#
|
| 1391 |
with gr.Accordion("π» COLLABORATIVE CODE CANVAS", open=True):
|
| 1392 |
code_editor = gr.Code(
|
| 1393 |
-
value="# Welcome to LCARS Collaborative Canvas\n
|
| 1394 |
language="python",
|
| 1395 |
-
lines=
|
| 1396 |
-
label=""
|
| 1397 |
-
elem_classes="lcars-code-editor"
|
| 1398 |
)
|
| 1399 |
|
| 1400 |
with gr.Row():
|
| 1401 |
-
load_to_chat_btn = gr.Button("π¬ Discuss
|
| 1402 |
-
analyze_btn = gr.Button("π Analyze
|
| 1403 |
optimize_btn = gr.Button("β‘ Optimize", elem_classes="lcars-button")
|
| 1404 |
-
document_btn = gr.Button("π Document", elem_classes="lcars-button")
|
| 1405 |
|
| 1406 |
# Chat Interface
|
| 1407 |
with gr.Column(elem_classes="lcars-panel"):
|
| 1408 |
-
gr.Markdown("### π¬ MISSION LOG"
|
| 1409 |
-
chatbot = gr.Chatbot(
|
| 1410 |
-
label="",
|
| 1411 |
-
elem_classes="lcars-chatbot",
|
| 1412 |
-
show_label=False,
|
| 1413 |
-
height=400
|
| 1414 |
-
)
|
| 1415 |
|
| 1416 |
with gr.Row():
|
| 1417 |
message_input = gr.Textbox(
|
| 1418 |
placeholder="Enter your command or query...",
|
| 1419 |
show_label=False,
|
| 1420 |
lines=2,
|
| 1421 |
-
elem_classes="lcars-input",
|
| 1422 |
scale=4
|
| 1423 |
)
|
| 1424 |
-
send_btn = gr.Button("π
|
| 1425 |
|
| 1426 |
-
# Status
|
| 1427 |
with gr.Row():
|
| 1428 |
status_display = gr.Textbox(
|
| 1429 |
value="LCARS terminal operational. Awaiting commands.",
|
| 1430 |
label="Status",
|
| 1431 |
-
max_lines=2
|
| 1432 |
-
elem_classes="lcars-input"
|
| 1433 |
)
|
| 1434 |
with gr.Column(scale=0):
|
| 1435 |
clear_chat_btn = gr.Button("ποΈ Clear Chat", elem_classes="lcars-button")
|
|
@@ -1437,201 +591,143 @@ class LcarsInterface:
|
|
| 1437 |
|
| 1438 |
# === EVENT HANDLERS ===
|
| 1439 |
|
| 1440 |
-
|
| 1441 |
-
|
| 1442 |
-
|
| 1443 |
-
|
| 1444 |
-
|
| 1445 |
-
|
| 1446 |
-
|
| 1447 |
-
|
| 1448 |
-
|
| 1449 |
-
|
| 1450 |
-
|
| 1451 |
-
|
| 1452 |
-
|
| 1453 |
-
|
| 1454 |
-
|
| 1455 |
-
|
| 1456 |
-
|
| 1457 |
-
|
| 1458 |
-
|
| 1459 |
-
|
| 1460 |
-
|
| 1461 |
-
|
| 1462 |
-
|
| 1463 |
-
|
| 1464 |
-
|
| 1465 |
-
|
| 1466 |
-
|
| 1467 |
-
|
| 1468 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1469 |
async def process_message(message, history, speech_enabled):
|
| 1470 |
-
"""Process a chat message"""
|
| 1471 |
if not message.strip():
|
| 1472 |
return "", history, "Please enter a message"
|
| 1473 |
|
| 1474 |
-
# Add user message to history
|
| 1475 |
history = history + [[message, None]]
|
| 1476 |
|
| 1477 |
try:
|
| 1478 |
-
# Get AI response
|
| 1479 |
response = await self.agent.chat_with_canvas(
|
| 1480 |
-
message,
|
| 1481 |
-
self.current_conversation,
|
| 1482 |
-
include_canvas=True
|
| 1483 |
)
|
| 1484 |
|
| 1485 |
-
# Update history with response
|
| 1486 |
history[-1][1] = response
|
| 1487 |
|
| 1488 |
-
# Speech synthesis if enabled
|
| 1489 |
if speech_enabled and self.agent.speech_enabled:
|
| 1490 |
self.agent.speak(response)
|
| 1491 |
|
| 1492 |
-
|
| 1493 |
-
artifacts = get_artifacts()
|
| 1494 |
-
|
| 1495 |
status = f"β
Response received. Canvas artifacts: {len(artifacts)}"
|
| 1496 |
return "", history, status, artifacts
|
| 1497 |
|
| 1498 |
except Exception as e:
|
| 1499 |
error_msg = f"β Error: {str(e)}"
|
| 1500 |
history[-1][1] = error_msg
|
| 1501 |
-
return "", history, error_msg,
|
| 1502 |
-
|
| 1503 |
-
def
|
| 1504 |
-
|
| 1505 |
-
|
| 1506 |
-
|
| 1507 |
-
|
| 1508 |
-
|
| 1509 |
-
|
| 1510 |
-
"""Quick analysis of code"""
|
| 1511 |
-
if not code.strip():
|
| 1512 |
-
return "Please provide some code to analyze"
|
| 1513 |
-
return f"Perform a comprehensive analysis of this code:\n```python\n{code}\n```"
|
| 1514 |
-
|
| 1515 |
-
def optimize_code(code):
|
| 1516 |
-
"""Quick optimization request"""
|
| 1517 |
-
if not code.strip():
|
| 1518 |
-
return "Please provide some code to optimize"
|
| 1519 |
-
return f"Optimize this code for performance and best practices:\n```python\n{code}\n```"
|
| 1520 |
-
|
| 1521 |
-
def document_code(code):
|
| 1522 |
-
"""Quick documentation request"""
|
| 1523 |
-
if not code.strip():
|
| 1524 |
-
return "Please provide some code to document"
|
| 1525 |
-
return f"Generate comprehensive documentation for this code:\n```python\n{code}\n```"
|
| 1526 |
-
|
| 1527 |
def clear_chat():
|
| 1528 |
-
"""Clear chat history"""
|
| 1529 |
self.agent.clear_conversation(self.current_conversation)
|
| 1530 |
return [], "β
Chat cleared"
|
| 1531 |
-
|
| 1532 |
def new_session():
|
| 1533 |
-
"""Start new session"""
|
| 1534 |
self.agent.clear_conversation(self.current_conversation)
|
| 1535 |
self.agent.clear_canvas(self.current_conversation)
|
| 1536 |
-
return [], "# New
|
| 1537 |
-
|
| 1538 |
-
# Connect
|
| 1539 |
-
|
| 1540 |
-
|
| 1541 |
-
|
| 1542 |
-
|
| 1543 |
-
|
| 1544 |
-
|
| 1545 |
-
|
| 1546 |
-
|
| 1547 |
-
|
| 1548 |
-
|
| 1549 |
-
|
| 1550 |
-
|
| 1551 |
-
|
| 1552 |
-
|
| 1553 |
-
|
| 1554 |
-
|
| 1555 |
-
|
| 1556 |
-
|
| 1557 |
-
|
| 1558 |
-
|
| 1559 |
-
|
| 1560 |
-
|
| 1561 |
-
)
|
| 1562 |
-
|
| 1563 |
-
load_to_chat_btn.click(
|
| 1564 |
-
load_code_to_chat,
|
| 1565 |
-
inputs=code_editor,
|
| 1566 |
-
outputs=message_input
|
| 1567 |
-
)
|
| 1568 |
-
|
| 1569 |
-
analyze_btn.click(
|
| 1570 |
-
analyze_code,
|
| 1571 |
-
inputs=code_editor,
|
| 1572 |
-
outputs=message_input
|
| 1573 |
-
)
|
| 1574 |
-
|
| 1575 |
-
optimize_btn.click(
|
| 1576 |
-
optimize_code,
|
| 1577 |
-
inputs=code_editor,
|
| 1578 |
-
outputs=message_input
|
| 1579 |
-
)
|
| 1580 |
-
|
| 1581 |
-
document_btn.click(
|
| 1582 |
-
document_code,
|
| 1583 |
-
inputs=code_editor,
|
| 1584 |
-
outputs=message_input
|
| 1585 |
-
)
|
| 1586 |
-
|
| 1587 |
-
refresh_artifacts_btn.click(
|
| 1588 |
-
get_artifacts,
|
| 1589 |
-
outputs=artifact_display
|
| 1590 |
-
)
|
| 1591 |
-
|
| 1592 |
-
clear_canvas_btn.click(
|
| 1593 |
-
clear_canvas,
|
| 1594 |
-
outputs=[artifact_display, status_display]
|
| 1595 |
-
)
|
| 1596 |
-
|
| 1597 |
-
clear_chat_btn.click(
|
| 1598 |
-
clear_chat,
|
| 1599 |
-
outputs=[chatbot, status_display]
|
| 1600 |
-
)
|
| 1601 |
-
|
| 1602 |
-
new_session_btn.click(
|
| 1603 |
-
new_session,
|
| 1604 |
-
outputs=[chatbot, code_editor, status_display, artifact_display]
|
| 1605 |
-
)
|
| 1606 |
-
|
| 1607 |
-
# Initialize artifacts on load
|
| 1608 |
interface.load(get_artifacts, outputs=artifact_display)
|
| 1609 |
|
| 1610 |
return interface
|
| 1611 |
|
| 1612 |
# --- Main Application ---
|
| 1613 |
def main():
|
| 1614 |
-
console.log("[bold blue]π Starting LCARS
|
| 1615 |
|
| 1616 |
-
|
| 1617 |
-
|
| 1618 |
-
|
| 1619 |
-
|
| 1620 |
-
|
| 1621 |
-
|
| 1622 |
-
|
| 1623 |
-
|
| 1624 |
-
|
| 1625 |
-
|
| 1626 |
-
|
| 1627 |
-
|
| 1628 |
-
|
| 1629 |
-
|
| 1630 |
-
|
| 1631 |
-
console.log(f"[bold red]Failed to start application: {e}[/bold red]")
|
| 1632 |
-
raise
|
| 1633 |
-
|
| 1634 |
-
|
| 1635 |
|
| 1636 |
if __name__ == "__main__":
|
| 1637 |
main()
|
|
|
|
| 15 |
import gradio as gr
|
| 16 |
from rich.console import Console
|
| 17 |
from openai import OpenAI, AsyncOpenAI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# --- Configuration ---
|
| 20 |
+
LOCAL_BASE_URL = "http://localhost:1234/v1"
|
| 21 |
+
LOCAL_API_KEY = "not-needed"
|
| 22 |
+
|
| 23 |
+
# HuggingFace Spaces configuration
|
| 24 |
+
HF_INFERENCE_URL = "https://api-inference.huggingface.co/models/"
|
| 25 |
+
HF_API_KEY = os.getenv("HF_API_KEY", "")
|
| 26 |
+
|
| 27 |
+
# Available model options
|
| 28 |
+
MODEL_OPTIONS = {
|
| 29 |
+
"Local LM Studio": LOCAL_BASE_URL,
|
| 30 |
+
"Codellama 7B": "codellama/CodeLlama-7b-hf",
|
| 31 |
+
"Mistral 7B": "mistralai/Mistral-7B-v0.1",
|
| 32 |
+
"Llama 2 7B": "meta-llama/Llama-2-7b-chat-hf",
|
| 33 |
+
"Falcon 7B": "tiiuae/falcon-7b-instruct"
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
DEFAULT_TEMPERATURE = 0.7
|
| 37 |
DEFAULT_MAX_TOKENS = 5000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
console = Console()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# --- Canvas Artifact Dataclass ---
|
| 42 |
@dataclass
|
| 43 |
class CanvasArtifact:
|
| 44 |
id: str
|
|
|
|
| 48 |
timestamp: float
|
| 49 |
metadata: Dict[str, Any]
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# --- Enhanced LLMAgent with Canvas Support ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
class EnhancedLLMAgent:
|
| 53 |
+
def __init__(self, model_id: str = "local-model", system_prompt: str = None,
|
| 54 |
+
base_url: str = LOCAL_BASE_URL, api_key: str = LOCAL_API_KEY,
|
| 55 |
+
use_huggingface: bool = False):
|
| 56 |
+
|
| 57 |
+
self.use_huggingface = use_huggingface
|
| 58 |
self.model_id = model_id
|
| 59 |
self.system_prompt = system_prompt or """You are an advanced AI development assistant operating in a Star Trek LCARS interface.
|
| 60 |
You specialize in code generation, analysis, and collaborative development.
|
| 61 |
Always provide practical, executable code solutions when appropriate.
|
| 62 |
Format code responses clearly with proper markdown code blocks and explain your reasoning."""
|
| 63 |
+
|
| 64 |
+
if use_huggingface:
|
| 65 |
+
# Use HuggingFace Inference API
|
| 66 |
+
self.base_url = HF_INFERENCE_URL
|
| 67 |
+
self.api_key = HF_API_KEY
|
| 68 |
+
self.client = None
|
| 69 |
+
console.log("[green]π Using HuggingFace Inference API[/green]")
|
| 70 |
+
else:
|
| 71 |
+
# Use local LM Studio
|
| 72 |
+
self.base_url = base_url
|
| 73 |
+
self.api_key = api_key
|
| 74 |
+
self.client = OpenAI(base_url=base_url, api_key=api_key)
|
| 75 |
+
console.log(f"[green]π Using Local LM Studio: {base_url}[/green]")
|
| 76 |
|
| 77 |
# Enhanced conversation and canvas management
|
| 78 |
self.conversations: Dict[str, List[Dict]] = {}
|
|
|
|
| 84 |
self.tts_engine = pyttsx3.init()
|
| 85 |
self.setup_tts()
|
| 86 |
self.speech_enabled = True
|
| 87 |
+
console.log("[green]TTS engine initialized successfully[/green]")
|
| 88 |
except Exception as e:
|
| 89 |
+
console.log(f"[red]TTS initialization failed: {e}[/red]")
|
| 90 |
self.speech_enabled = False
|
|
|
|
|
|
|
| 91 |
|
| 92 |
def setup_tts(self):
|
| 93 |
"""Configure text-to-speech engine"""
|
| 94 |
+
try:
|
| 95 |
voices = self.tts_engine.getProperty('voices')
|
| 96 |
if voices:
|
| 97 |
+
# Try to find a better voice
|
| 98 |
+
for voice in voices:
|
| 99 |
+
if 'female' in voice.name.lower() or 'zira' in voice.name.lower():
|
| 100 |
+
self.tts_engine.setProperty('voice', voice.id)
|
| 101 |
+
break
|
| 102 |
+
else:
|
| 103 |
+
self.tts_engine.setProperty('voice', voices[0].id)
|
| 104 |
+
|
| 105 |
+
self.tts_engine.setProperty('rate', 180)
|
| 106 |
+
self.tts_engine.setProperty('volume', 1.0)
|
| 107 |
+
except Exception as e:
|
| 108 |
+
console.log(f"[red]TTS setup error: {e}[/red]")
|
| 109 |
|
| 110 |
def speak(self, text: str):
|
| 111 |
"""Convert text to speech in a non-blocking way"""
|
|
|
|
| 114 |
|
| 115 |
def _speak():
|
| 116 |
try:
|
| 117 |
+
# Clean text for speech
|
| 118 |
clean_text = re.sub(r'```.*?```', '', text, flags=re.DOTALL)
|
| 119 |
clean_text = re.sub(r'`.*?`', '', clean_text)
|
| 120 |
+
clean_text = re.sub(r'\n+', '. ', clean_text)
|
| 121 |
+
clean_text = re.sub(r'\s+', ' ', clean_text)
|
| 122 |
clean_text = clean_text.strip()
|
| 123 |
+
|
| 124 |
+
if clean_text and len(clean_text) > 10:
|
| 125 |
+
console.log(f"[blue]Speaking: {clean_text[:100]}...[/blue]")
|
| 126 |
+
self.tts_engine.say(clean_text[:400])
|
| 127 |
self.tts_engine.runAndWait()
|
|
|
|
|
|
|
|
|
|
| 128 |
except Exception as e:
|
| 129 |
console.log(f"[red]TTS Error: {e}[/red]")
|
| 130 |
|
| 131 |
thread = threading.Thread(target=_speak, daemon=True)
|
| 132 |
thread.start()
|
| 133 |
|
| 134 |
+
async def _local_inference(self, messages: List[Dict]) -> str:
|
| 135 |
+
"""Use local LM Studio"""
|
| 136 |
try:
|
| 137 |
+
async_client = AsyncOpenAI(base_url=self.base_url, api_key=self.api_key)
|
| 138 |
+
response = await async_client.chat.completions.create(
|
| 139 |
+
model=self.model_id,
|
| 140 |
+
messages=messages,
|
| 141 |
+
temperature=0.7,
|
| 142 |
+
max_tokens=DEFAULT_MAX_TOKENS
|
| 143 |
+
)
|
| 144 |
+
return response.choices[0].message.content
|
| 145 |
+
except Exception as e:
|
| 146 |
+
return f"Local inference error: {str(e)}"
|
| 147 |
|
| 148 |
+
async def _hf_inference(self, messages: List[Dict]) -> str:
|
| 149 |
+
"""Use HuggingFace Inference API"""
|
| 150 |
+
try:
|
| 151 |
+
import requests
|
| 152 |
+
# Convert to HF format
|
| 153 |
+
prompt = self._convert_messages_to_prompt(messages)
|
| 154 |
+
|
| 155 |
+
headers = {
|
| 156 |
+
"Authorization": f"Bearer {self.api_key}",
|
| 157 |
+
"Content-Type": "application/json"
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
payload = {
|
| 161 |
+
"inputs": prompt,
|
| 162 |
+
"parameters": {
|
| 163 |
+
"max_new_tokens": DEFAULT_MAX_TOKENS,
|
| 164 |
+
"temperature": 0.7,
|
| 165 |
+
"do_sample": True,
|
| 166 |
+
"return_full_text": False
|
| 167 |
+
}
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
model_url = f"{self.base_url}{self.model_id}"
|
| 171 |
+
response = requests.post(model_url, headers=headers, json=payload, timeout=30)
|
| 172 |
+
response.raise_for_status()
|
| 173 |
+
result = response.json()
|
| 174 |
+
return result[0]['generated_text']
|
| 175 |
except Exception as e:
|
| 176 |
+
return f"HuggingFace API Error: {str(e)}"
|
| 177 |
+
|
| 178 |
+
def _convert_messages_to_prompt(self, messages: List[Dict]) -> str:
|
| 179 |
+
"""Convert conversation messages to a single prompt for HF"""
|
| 180 |
+
prompt = ""
|
| 181 |
+
for msg in messages:
|
| 182 |
+
if msg["role"] == "system":
|
| 183 |
+
prompt += f"System: {msg['content']}\n\n"
|
| 184 |
+
elif msg["role"] == "user":
|
| 185 |
+
prompt += f"User: {msg['content']}\n\n"
|
| 186 |
+
elif msg["role"] == "assistant":
|
| 187 |
+
prompt += f"Assistant: {msg['content']}\n\n"
|
| 188 |
+
prompt += "Assistant:"
|
| 189 |
+
return prompt
|
| 190 |
|
| 191 |
def add_artifact_to_canvas(self, conversation_id: str, content: str, artifact_type: str = "code", title: str = None):
|
| 192 |
"""Add artifacts to the collaborative canvas"""
|
|
|
|
| 212 |
return ""
|
| 213 |
|
| 214 |
context_lines = ["\n=== COLLABORATIVE CANVAS ARTIFACTS ==="]
|
| 215 |
+
for artifact in self.canvas_artifacts[conversation_id][-10:]:
|
| 216 |
context_lines.append(f"\n--- {artifact.title} [{artifact.type.upper()}] ---")
|
| 217 |
preview = artifact.content[:500] + "..." if len(artifact.content) > 500 else artifact.content
|
| 218 |
context_lines.append(preview)
|
|
|
|
| 220 |
return "\n".join(context_lines) + "\n=================================\n"
|
| 221 |
|
| 222 |
async def chat_with_canvas(self, message: str, conversation_id: str = "default", include_canvas: bool = True) -> str:
|
| 223 |
+
"""Enhanced chat that works with both local and HF"""
|
| 224 |
if conversation_id not in self.conversations:
|
| 225 |
self.conversations[conversation_id] = []
|
| 226 |
|
|
|
|
| 241 |
messages.append({"role": "user", "content": message})
|
| 242 |
|
| 243 |
try:
|
| 244 |
+
if self.use_huggingface:
|
| 245 |
+
response_text = await self._hf_inference(messages)
|
| 246 |
+
else:
|
| 247 |
+
response_text = await self._local_inference(messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
# Update conversation history
|
| 250 |
self.conversations[conversation_id].extend([
|
|
|
|
| 264 |
|
| 265 |
def _extract_artifacts_to_canvas(self, response: str, conversation_id: str):
|
| 266 |
"""Automatically extract code blocks and add to canvas"""
|
|
|
|
| 267 |
code_blocks = re.findall(r'```(?:\w+)?\n(.*?)```', response, re.DOTALL)
|
| 268 |
for i, code_block in enumerate(code_blocks):
|
| 269 |
+
if len(code_block.strip()) > 10:
|
|
|
|
| 270 |
lang_match = re.search(r'```(\w+)\n', response)
|
| 271 |
lang = lang_match.group(1) if lang_match else "unknown"
|
| 272 |
|
|
|
|
| 295 |
return []
|
| 296 |
|
| 297 |
artifacts = []
|
| 298 |
+
for artifact in reversed(self.canvas_artifacts[conversation_id]):
|
| 299 |
artifacts.append({
|
| 300 |
"id": artifact.id,
|
| 301 |
"type": artifact.type.upper(),
|
|
|
|
| 316 |
return artifact
|
| 317 |
return None
|
| 318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
def update_config(self, base_url: str, api_key: str, model_id: str, temperature: float, max_tokens: int):
|
| 320 |
"""Update agent configuration"""
|
| 321 |
self.base_url = base_url
|
|
|
|
| 323 |
self.model_id = model_id
|
| 324 |
console.log(f"[blue]Updated config: {model_id} @ {base_url}[/blue]")
|
| 325 |
|
| 326 |
+
@staticmethod
|
| 327 |
+
async def fetch_available_models(base_url: str, api_key: str, use_huggingface: bool = False) -> List[str]:
|
| 328 |
+
"""Fetch available models - works for both local and HF"""
|
| 329 |
+
if use_huggingface:
|
| 330 |
+
# Return popular HF models
|
| 331 |
+
return list(MODEL_OPTIONS.keys())[1:] # Skip "Local LM Studio"
|
| 332 |
+
else:
|
| 333 |
+
# Fetch from local LM Studio
|
| 334 |
+
try:
|
| 335 |
+
console.log(f"[blue]Fetching models from {base_url}[/blue]")
|
| 336 |
+
async_client = AsyncOpenAI(base_url=base_url, api_key=api_key)
|
| 337 |
+
models = await async_client.models.list()
|
| 338 |
+
model_list = [model.id for model in models.data]
|
| 339 |
+
console.log(f"[green]Found {len(model_list)} local models[/green]")
|
| 340 |
+
return model_list
|
| 341 |
+
except Exception as e:
|
| 342 |
+
console.log(f"[red]Error fetching local models: {e}[/red]")
|
| 343 |
+
return ["local-model"]
|
| 344 |
+
|
| 345 |
# --- LCARS Styled Gradio Interface ---
|
| 346 |
class LcarsInterface:
|
| 347 |
+
def __init__(self):
|
| 348 |
+
# Start with HuggingFace by default for Spaces
|
| 349 |
+
self.use_huggingface = True
|
| 350 |
+
self.agent = EnhancedLLMAgent(use_huggingface=self.use_huggingface)
|
| 351 |
self.current_conversation = "default"
|
| 352 |
|
| 353 |
def create_interface(self):
|
| 354 |
"""Create the full LCARS-styled interface"""
|
| 355 |
|
|
|
|
| 356 |
lcars_css = """
|
| 357 |
:root {
|
| 358 |
--lcars-orange: #FF9900;
|
|
|
|
| 393 |
border-radius: 0 60px 0 0;
|
| 394 |
margin: -20px -20px 20px -20px;
|
| 395 |
border-bottom: 6px solid var(--lcars-blue);
|
|
|
|
| 396 |
}
|
| 397 |
|
| 398 |
.lcars-title {
|
| 399 |
+
font-size: 2.5em;
|
| 400 |
font-weight: bold;
|
| 401 |
color: var(--lcars-black);
|
|
|
|
| 402 |
margin: 0;
|
|
|
|
| 403 |
}
|
| 404 |
|
| 405 |
.lcars-subtitle {
|
| 406 |
+
font-size: 1.2em;
|
| 407 |
color: var(--lcars-black);
|
| 408 |
margin: 10px 0 0 0;
|
|
|
|
| 409 |
}
|
| 410 |
|
| 411 |
.lcars-panel {
|
| 412 |
+
background: rgba(66, 66, 66, 0.9);
|
| 413 |
+
border: 2px solid var(--lcars-orange);
|
| 414 |
+
border-radius: 0 20px 0 20px;
|
| 415 |
+
padding: 15px;
|
| 416 |
+
margin-bottom: 15px;
|
|
|
|
| 417 |
}
|
| 418 |
|
| 419 |
.lcars-button {
|
| 420 |
+
background: var(--lcars-orange);
|
| 421 |
color: var(--lcars-black) !important;
|
| 422 |
border: none !important;
|
| 423 |
+
border-radius: 0 15px 0 15px !important;
|
| 424 |
+
padding: 10px 20px !important;
|
| 425 |
font-family: inherit !important;
|
| 426 |
font-weight: bold !important;
|
| 427 |
+
margin: 5px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
}
|
| 429 |
|
| 430 |
.lcars-button:hover {
|
| 431 |
+
background: var(--lcars-red) !important;
|
|
|
|
|
|
|
| 432 |
}
|
| 433 |
|
| 434 |
.lcars-input {
|
| 435 |
background: var(--lcars-black) !important;
|
| 436 |
color: var(--lcars-orange) !important;
|
| 437 |
border: 2px solid var(--lcars-blue) !important;
|
| 438 |
+
border-radius: 0 10px 0 10px !important;
|
| 439 |
+
padding: 10px !important;
|
|
|
|
|
|
|
| 440 |
}
|
| 441 |
|
| 442 |
.lcars-chatbot {
|
| 443 |
background: var(--lcars-black) !important;
|
| 444 |
+
border: 2px solid var(--lcars-purple) !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
border-radius: 0 15px 0 15px !important;
|
| 446 |
}
|
| 447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
.status-indicator {
|
| 449 |
display: inline-block;
|
| 450 |
+
width: 12px;
|
| 451 |
+
height: 12px;
|
| 452 |
border-radius: 50%;
|
| 453 |
background: var(--lcars-red);
|
| 454 |
+
margin-right: 8px;
|
|
|
|
| 455 |
}
|
| 456 |
|
| 457 |
.status-online {
|
| 458 |
background: var(--lcars-blue);
|
| 459 |
+
animation: pulse 2s infinite;
|
| 460 |
}
|
| 461 |
|
| 462 |
@keyframes pulse {
|
| 463 |
+
0% { opacity: 1; }
|
| 464 |
+
50% { opacity: 0.5; }
|
| 465 |
+
100% { opacity: 1; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
}
|
| 467 |
"""
|
| 468 |
|
| 469 |
with gr.Blocks(css=lcars_css, theme=gr.themes.Default(), title="LCARS Terminal") as interface:
|
| 470 |
|
| 471 |
with gr.Column(elem_classes="lcars-container"):
|
| 472 |
+
# Header
|
| 473 |
with gr.Row(elem_classes="lcars-header"):
|
| 474 |
gr.Markdown("""
|
| 475 |
<div style="text-align: center; width: 100%;">
|
| 476 |
+
<div class="lcars-title">π LCARS TERMINAL</div>
|
| 477 |
<div class="lcars-subtitle">STARFLEET AI DEVELOPMENT CONSOLE</div>
|
| 478 |
<div style="margin-top: 10px;">
|
| 479 |
<span class="status-indicator status-online"></span>
|
|
|
|
| 482 |
</div>
|
| 483 |
""")
|
| 484 |
|
| 485 |
+
# Connection Type Selector
|
| 486 |
+
with gr.Row(elem_classes="lcars-panel"):
|
| 487 |
+
gr.Markdown("### π CONNECTION TYPE")
|
| 488 |
+
connection_type = gr.Radio(
|
| 489 |
+
choices=["HuggingFace Inference", "Local LM Studio"],
|
| 490 |
+
value="HuggingFace Inference",
|
| 491 |
+
label="Select Connection Type",
|
| 492 |
+
elem_classes="lcars-input"
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
# Main Content
|
| 496 |
with gr.Row():
|
| 497 |
+
# Left Sidebar
|
| 498 |
+
with gr.Column(scale=1):
|
| 499 |
# Configuration Panel
|
| 500 |
with gr.Column(elem_classes="lcars-panel"):
|
| 501 |
+
gr.Markdown("### π§ CONFIGURATION")
|
| 502 |
|
| 503 |
+
# Connection-specific settings
|
| 504 |
+
with gr.Row(visible=False) as local_settings:
|
| 505 |
base_url = gr.Textbox(
|
| 506 |
+
value=LOCAL_BASE_URL,
|
| 507 |
+
label="LM Studio URL",
|
| 508 |
elem_classes="lcars-input"
|
| 509 |
)
|
| 510 |
api_key = gr.Textbox(
|
| 511 |
+
value=LOCAL_API_KEY,
|
| 512 |
label="API Key",
|
| 513 |
type="password",
|
| 514 |
elem_classes="lcars-input"
|
| 515 |
)
|
| 516 |
|
| 517 |
+
with gr.Row(visible=True) as hf_settings:
|
| 518 |
+
hf_api_key = gr.Textbox(
|
| 519 |
+
value=HF_API_KEY,
|
| 520 |
+
label="HuggingFace API Key",
|
| 521 |
+
type="password",
|
| 522 |
+
elem_classes="lcars-input",
|
| 523 |
+
placeholder="Get from https://huggingface.co/settings/tokens"
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
with gr.Row():
|
| 527 |
model_dropdown = gr.Dropdown(
|
| 528 |
+
choices=list(MODEL_OPTIONS.keys())[1:],
|
| 529 |
+
value=list(MODEL_OPTIONS.keys())[1],
|
| 530 |
label="AI Model",
|
| 531 |
elem_classes="lcars-input"
|
| 532 |
)
|
| 533 |
fetch_models_btn = gr.Button("π‘ Fetch Models", elem_classes="lcars-button")
|
| 534 |
|
| 535 |
with gr.Row():
|
| 536 |
+
temperature = gr.Slider(0.0, 2.0, value=0.7, label="Temperature")
|
| 537 |
+
max_tokens = gr.Slider(128, 8192, value=2000, step=128, label="Max Tokens")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 538 |
|
| 539 |
with gr.Row():
|
| 540 |
update_config_btn = gr.Button("πΎ Apply Config", elem_classes="lcars-button")
|
| 541 |
speech_toggle = gr.Checkbox(value=True, label="π Speech Output")
|
| 542 |
|
| 543 |
+
# Canvas Artifacts
|
| 544 |
with gr.Column(elem_classes="lcars-panel"):
|
| 545 |
+
gr.Markdown("### π¨ CANVAS ARTIFACTS")
|
| 546 |
+
artifact_display = gr.JSON(label="")
|
|
|
|
|
|
|
|
|
|
| 547 |
with gr.Row():
|
| 548 |
refresh_artifacts_btn = gr.Button("π Refresh", elem_classes="lcars-button")
|
| 549 |
clear_canvas_btn = gr.Button("ποΈ Clear Canvas", elem_classes="lcars-button")
|
| 550 |
|
| 551 |
+
# Main Content Area
|
| 552 |
with gr.Column(scale=2):
|
| 553 |
+
# Code Canvas
|
| 554 |
with gr.Accordion("π» COLLABORATIVE CODE CANVAS", open=True):
|
| 555 |
code_editor = gr.Code(
|
| 556 |
+
value="# Welcome to LCARS Collaborative Canvas\n\nprint('Hello, Starfleet!')",
|
| 557 |
language="python",
|
| 558 |
+
lines=15,
|
| 559 |
+
label=""
|
|
|
|
| 560 |
)
|
| 561 |
|
| 562 |
with gr.Row():
|
| 563 |
+
load_to_chat_btn = gr.Button("π¬ Discuss Code", elem_classes="lcars-button")
|
| 564 |
+
analyze_btn = gr.Button("π Analyze", elem_classes="lcars-button")
|
| 565 |
optimize_btn = gr.Button("β‘ Optimize", elem_classes="lcars-button")
|
|
|
|
| 566 |
|
| 567 |
# Chat Interface
|
| 568 |
with gr.Column(elem_classes="lcars-panel"):
|
| 569 |
+
gr.Markdown("### π¬ MISSION LOG")
|
| 570 |
+
chatbot = gr.Chatbot(label="", height=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 571 |
|
| 572 |
with gr.Row():
|
| 573 |
message_input = gr.Textbox(
|
| 574 |
placeholder="Enter your command or query...",
|
| 575 |
show_label=False,
|
| 576 |
lines=2,
|
|
|
|
| 577 |
scale=4
|
| 578 |
)
|
| 579 |
+
send_btn = gr.Button("π SEND", elem_classes="lcars-button", scale=1)
|
| 580 |
|
| 581 |
+
# Status
|
| 582 |
with gr.Row():
|
| 583 |
status_display = gr.Textbox(
|
| 584 |
value="LCARS terminal operational. Awaiting commands.",
|
| 585 |
label="Status",
|
| 586 |
+
max_lines=2
|
|
|
|
| 587 |
)
|
| 588 |
with gr.Column(scale=0):
|
| 589 |
clear_chat_btn = gr.Button("ποΈ Clear Chat", elem_classes="lcars-button")
|
|
|
|
| 591 |
|
| 592 |
# === EVENT HANDLERS ===
|
| 593 |
|
| 594 |
+
def switch_connection(connection_type):
|
| 595 |
+
if connection_type == "Local LM Studio":
|
| 596 |
+
return [
|
| 597 |
+
gr.update(visible=True),
|
| 598 |
+
gr.update(visible=False),
|
| 599 |
+
gr.update(choices=["Fetching local models..."], value="Fetching local models...")
|
| 600 |
+
]
|
| 601 |
+
else:
|
| 602 |
+
return [
|
| 603 |
+
gr.update(visible=False),
|
| 604 |
+
gr.update(visible=True),
|
| 605 |
+
gr.update(choices=list(MODEL_OPTIONS.keys())[1:], value=list(MODEL_OPTIONS.keys())[1])
|
| 606 |
+
]
|
| 607 |
+
|
| 608 |
+
async def fetch_models_updated(connection_type, base_url_val, api_key_val, hf_api_key_val):
|
| 609 |
+
if connection_type == "Local LM Studio":
|
| 610 |
+
models = await EnhancedLLMAgent.fetch_available_models(
|
| 611 |
+
base_url_val, api_key_val, use_huggingface=False
|
| 612 |
+
)
|
| 613 |
+
else:
|
| 614 |
+
models = await EnhancedLLMAgent.fetch_available_models(
|
| 615 |
+
"", hf_api_key_val, use_huggingface=True
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
if models:
|
| 619 |
+
return gr.update(choices=models, value=models[0])
|
| 620 |
+
return gr.update(choices=["No models found"])
|
| 621 |
+
|
| 622 |
+
def update_agent_connection(connection_type, model_id, base_url_val, api_key_val, hf_api_key_val):
|
| 623 |
+
use_hf = connection_type == "HuggingFace Inference"
|
| 624 |
+
self.use_huggingface = use_hf
|
| 625 |
+
|
| 626 |
+
if use_hf:
|
| 627 |
+
self.agent = EnhancedLLMAgent(
|
| 628 |
+
model_id=model_id,
|
| 629 |
+
use_huggingface=True,
|
| 630 |
+
api_key=hf_api_key_val
|
| 631 |
+
)
|
| 632 |
+
return f"β
Switched to HuggingFace: {model_id}"
|
| 633 |
+
else:
|
| 634 |
+
self.agent = EnhancedLLMAgent(
|
| 635 |
+
model_id=model_id,
|
| 636 |
+
base_url=base_url_val,
|
| 637 |
+
api_key=api_key_val,
|
| 638 |
+
use_huggingface=False
|
| 639 |
+
)
|
| 640 |
+
return f"β
Switched to Local: {base_url_val}"
|
| 641 |
+
|
| 642 |
async def process_message(message, history, speech_enabled):
|
|
|
|
| 643 |
if not message.strip():
|
| 644 |
return "", history, "Please enter a message"
|
| 645 |
|
|
|
|
| 646 |
history = history + [[message, None]]
|
| 647 |
|
| 648 |
try:
|
|
|
|
| 649 |
response = await self.agent.chat_with_canvas(
|
| 650 |
+
message, self.current_conversation, include_canvas=True
|
|
|
|
|
|
|
| 651 |
)
|
| 652 |
|
|
|
|
| 653 |
history[-1][1] = response
|
| 654 |
|
|
|
|
| 655 |
if speech_enabled and self.agent.speech_enabled:
|
| 656 |
self.agent.speak(response)
|
| 657 |
|
| 658 |
+
artifacts = self.agent.get_canvas_summary(self.current_conversation)
|
|
|
|
|
|
|
| 659 |
status = f"β
Response received. Canvas artifacts: {len(artifacts)}"
|
| 660 |
return "", history, status, artifacts
|
| 661 |
|
| 662 |
except Exception as e:
|
| 663 |
error_msg = f"β Error: {str(e)}"
|
| 664 |
history[-1][1] = error_msg
|
| 665 |
+
return "", history, error_msg, self.agent.get_canvas_summary(self.current_conversation)
|
| 666 |
+
|
| 667 |
+
def get_artifacts():
|
| 668 |
+
return self.agent.get_canvas_summary(self.current_conversation)
|
| 669 |
+
|
| 670 |
+
def clear_canvas():
|
| 671 |
+
self.agent.clear_canvas(self.current_conversation)
|
| 672 |
+
return [], "β
Canvas cleared"
|
| 673 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 674 |
def clear_chat():
|
|
|
|
| 675 |
self.agent.clear_conversation(self.current_conversation)
|
| 676 |
return [], "β
Chat cleared"
|
| 677 |
+
|
| 678 |
def new_session():
|
|
|
|
| 679 |
self.agent.clear_conversation(self.current_conversation)
|
| 680 |
self.agent.clear_canvas(self.current_conversation)
|
| 681 |
+
return [], "# New session started\n\nprint('Ready!')", "π New session started", []
|
| 682 |
+
|
| 683 |
+
# Connect events
|
| 684 |
+
connection_type.change(switch_connection, inputs=connection_type,
|
| 685 |
+
outputs=[local_settings, hf_settings, model_dropdown])
|
| 686 |
+
|
| 687 |
+
fetch_models_btn.click(fetch_models_updated,
|
| 688 |
+
inputs=[connection_type, base_url, api_key, hf_api_key],
|
| 689 |
+
outputs=model_dropdown)
|
| 690 |
+
|
| 691 |
+
model_dropdown.change(update_agent_connection,
|
| 692 |
+
inputs=[connection_type, model_dropdown, base_url, api_key, hf_api_key],
|
| 693 |
+
outputs=status_display)
|
| 694 |
+
|
| 695 |
+
send_btn.click(process_message,
|
| 696 |
+
inputs=[message_input, chatbot, speech_toggle],
|
| 697 |
+
outputs=[message_input, chatbot, status_display, artifact_display])
|
| 698 |
+
|
| 699 |
+
message_input.submit(process_message,
|
| 700 |
+
inputs=[message_input, chatbot, speech_toggle],
|
| 701 |
+
outputs=[message_input, chatbot, status_display, artifact_display])
|
| 702 |
+
|
| 703 |
+
refresh_artifacts_btn.click(get_artifacts, outputs=artifact_display)
|
| 704 |
+
clear_canvas_btn.click(clear_canvas, outputs=[artifact_display, status_display])
|
| 705 |
+
clear_chat_btn.click(clear_chat, outputs=[chatbot, status_display])
|
| 706 |
+
new_session_btn.click(new_session, outputs=[chatbot, code_editor, status_display, artifact_display])
|
| 707 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 708 |
interface.load(get_artifacts, outputs=artifact_display)
|
| 709 |
|
| 710 |
return interface
|
| 711 |
|
| 712 |
# --- Main Application ---
|
| 713 |
def main():
|
| 714 |
+
console.log("[bold blue]π Starting LCARS Terminal...[/bold blue]")
|
| 715 |
|
| 716 |
+
is_space = os.getenv('SPACE_ID') is not None
|
| 717 |
+
|
| 718 |
+
if is_space:
|
| 719 |
+
console.log("[green]π Detected HuggingFace Space[/green]")
|
| 720 |
+
else:
|
| 721 |
+
console.log("[blue]π» Running locally[/blue]")
|
| 722 |
+
|
| 723 |
+
interface = LcarsInterface()
|
| 724 |
+
demo = interface.create_interface()
|
| 725 |
+
|
| 726 |
+
demo.launch(
|
| 727 |
+
server_name="0.0.0.0" if is_space else "127.0.0.1",
|
| 728 |
+
server_port=7860,
|
| 729 |
+
share=is_space
|
| 730 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 731 |
|
| 732 |
if __name__ == "__main__":
|
| 733 |
main()
|