Kajise Org
Fix ident
96cf2e5
raw
history blame
4.18 kB
from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="LLukas22/gpt4all-lora-quantized-ggjt", filename="ggjt-model.bin", local_dir=".")
llm = Llama(model_path="./ggjt-model.bin")
ins = '''### Instruction:
{}
### Response:
'''
import requests
from bs4 import BeautifulSoup
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
}
theme = gr.themes.Monochrome(
primary_hue="purple",
secondary_hue="red",
neutral_hue="neutral",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
)
def search_ddg(question: str):
response = requests.get("https://duckduckgo.com/html/", headers=headers, params={"q": question})
data = response.text
soup = BeautifulSoup(data, "html.parser")
result_texts = soup.find_all("a", class_="result__snippet")
results: list[str] = []
output_string: str = ""
for element in result_texts:
if len(results) < 3:
text_content = element.get_text()
results.append(text_content)
else:
continue
for element in results:
output_string += element + '\n\n'
return output_string
def generate(instruction):
base_prompt = ins.format(instruction)
feeding_data = search_ddg("What is KOIT-FM?")
response = llm(ins.format(base_prompt + "\n" + feeding_data))
result = response['choices'][0]['text']
return result
examples = [
"How do dogs bark?",
"Why are apples red?",
"How do I make a campfire?",
"Why do cats love to chirp at something?"
]
def process_example(args):
for x in generate(args):
pass
return x
css = ".generating {visibility: hidden}"
class PurpleTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.purple,
secondary_hue: colors.Color | str = colors.red,
neutral_hue: colors.Color | str = colors.neutral,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Inter"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Space Grotesk"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
font=font,
font_mono=font_mono,
)
super().set(
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
button_primary_text_color="white",
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
input_background_fill="zinc",
input_border_color="*secondary_300",
input_shadow="*shadow_drop",
input_shadow_focus="*shadow_drop_lg",
)
custom_theme = PurpleTheme()
with gr.Blocks(theme=custom_theme, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(
""" ## GPT4ALL
7b quantized 4bit (q4_0)
Type in the box below and click the button to generate answers to your most pressing questions!
""")
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input")
with gr.Box():
gr.Markdown("**Answer**")
output = gr.Markdown(elem_id="q-output")
submit = gr.Button("Generate", variant="primary")
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=False,
fn=process_example,
outputs=[output],
)
submit.click(generate, inputs=[instruction], outputs=[output])
instruction.submit(generate, inputs=[instruction], outputs=[output])
demo.queue(concurrency_count=1).launch(debug=True)