Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py | |
| import inspect | |
| import os.path as osp | |
| from dataclasses import dataclass | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.loaders import IPAdapterMixin | |
| from diffusers.models import AutoencoderKL | |
| from diffusers.pipelines import DiffusionPipeline | |
| from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, LMSDiscreteScheduler, | |
| PNDMScheduler) | |
| from diffusers.utils import (BaseOutput, deprecate, is_accelerate_available, | |
| logging) | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from einops import rearrange | |
| from omegaconf import OmegaConf | |
| from packaging import version | |
| from safetensors import safe_open | |
| from tqdm import tqdm | |
| from transformers import (CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, | |
| CLIPVisionModelWithProjection) | |
| from animatediff.models.resnet import InflatedConv3d | |
| from animatediff.models.unet import UNet3DConditionModel | |
| from animatediff.utils.convert_from_ckpt import (convert_ldm_clip_checkpoint, | |
| convert_ldm_unet_checkpoint, | |
| convert_ldm_vae_checkpoint) | |
| from animatediff.utils.convert_lora_safetensor_to_diffusers import \ | |
| convert_lora_model_level | |
| from animatediff.utils.util import prepare_mask_coef_by_statistics | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| DEFAULT_N_PROMPT = ('wrong white balance, dark, sketches,worst quality,' | |
| 'low quality, deformed, distorted, disfigured, bad eyes, ' | |
| 'wrong lips,weird mouth, bad teeth, mutated hands and fingers, ' | |
| 'bad anatomy,wrong anatomy, amputation, extra limb, ' | |
| 'missing limb, floating,limbs, disconnected limbs, mutation, ' | |
| 'ugly, disgusting, bad_pictures, negative_hand-neg') | |
| class AnimationPipelineOutput(BaseOutput): | |
| videos: Union[torch.Tensor, np.ndarray] | |
| class I2VPipeline(DiffusionPipeline, IPAdapterMixin): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet3DConditionModel, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| feature_extractor: CLIPImageProcessor = None, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| ): | |
| super().__init__() | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate("steps_offset!=1", "1.0.0", | |
| deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("clip_sample not set", "1.0.0", | |
| deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
| version.parse(unet.config._diffusers_version).base_version | |
| ) < version.parse("0.9.0.dev0") | |
| is_unet_sample_size_less_64 = hasattr( | |
| unet.config, "sample_size") and unet.config.sample_size < 64 | |
| if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
| deprecation_message = ( | |
| "The configuration file of the unet has set the default `sample_size` to smaller than" | |
| " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" | |
| " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
| " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
| " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
| " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
| " in the config might lead to incorrect results in future versions. If you have downloaded this" | |
| " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
| " the `unet/config.json` file" | |
| ) | |
| deprecate("sample_size<64", "1.0.0", | |
| deprecation_message, standard_warn=False) | |
| new_config = dict(unet.config) | |
| new_config["sample_size"] = 64 | |
| unet._internal_dict = FrozenDict(new_config) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** ( | |
| len(self.vae.config.block_out_channels) - 1) | |
| self.use_ip_adapter = False | |
| self.st_motion = None | |
| def set_st_motion(self, st_motion: List): | |
| """Set style transfer motion.""" | |
| self.st_motion = st_motion | |
| def build_pipeline(cls, | |
| base_cfg, | |
| base_model: str, | |
| unet_path: str, | |
| dreambooth_path: Optional[str] = None, | |
| lora_path: Optional[str] = None, | |
| lora_alpha: int = 0, | |
| vae_path: Optional[str] = None, | |
| ip_adapter_path: Optional[str] = None, | |
| ip_adapter_scale: float = 0.0, | |
| only_load_vae_decoder: bool = False, | |
| only_load_vae_encoder: bool = False) -> 'I2VPipeline': | |
| """Method to build pipeline in a faster way~ | |
| Args: | |
| base_cfg: The config to build model | |
| base_mode: The model id to initialize StableDiffusion | |
| unet_path: Path for i2v unet | |
| dreambooth_path: path for dreambooth model | |
| lora_path: path for lora model | |
| lora_alpha: value for lora scale | |
| only_load_vae_decoder: Only load VAE decoder from dreambooth / VAE ckpt | |
| and maitain encoder as original. | |
| """ | |
| # build unet | |
| unet = UNet3DConditionModel.from_pretrained_2d( | |
| base_model, subfolder="unet", | |
| unet_additional_kwargs=OmegaConf.to_container( | |
| base_cfg.unet_additional_kwargs)) | |
| old_weights = unet.conv_in.weight | |
| old_bias = unet.conv_in.bias | |
| new_conv1 = InflatedConv3d( | |
| 9, old_weights.shape[0], | |
| kernel_size=unet.conv_in.kernel_size, | |
| stride=unet.conv_in.stride, | |
| padding=unet.conv_in.padding, | |
| bias=True if old_bias is not None else False) | |
| param = torch.zeros((320, 5, 3, 3), requires_grad=True) | |
| new_conv1.weight = torch.nn.Parameter( | |
| torch.cat((old_weights, param), dim=1)) | |
| if old_bias is not None: | |
| new_conv1.bias = old_bias | |
| unet.conv_in = new_conv1 | |
| unet.config["in_channels"] = 9 | |
| unet_ckpt = torch.load(unet_path, map_location='cpu') | |
| # filter unet ckpt, only load motion module and conv_inv | |
| unet_ckpt = {k: v for k, v in unet_ckpt.items() | |
| if 'motion_module' in k or 'conv_in' in k} | |
| print(f'Unet prefix: ') | |
| print(set([k.split('.')[0] for k in unet_ckpt.keys()])) | |
| unet.load_state_dict(unet_ckpt, strict=False) | |
| # load vae, tokenizer, text encoder | |
| vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae") | |
| tokenizer = CLIPTokenizer.from_pretrained( | |
| base_model, subfolder="tokenizer") | |
| text_encoder = CLIPTextModel.from_pretrained( | |
| base_model, subfolder="text_encoder") | |
| noise_scheduler = DDIMScheduler( | |
| **OmegaConf.to_container(base_cfg.noise_scheduler_kwargs)) | |
| if dreambooth_path and dreambooth_path.upper() != 'NONE': | |
| print(" >>> Begin loading DreamBooth >>>") | |
| base_model_state_dict = {} | |
| with safe_open(dreambooth_path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| base_model_state_dict[key] = f.get_tensor(key) | |
| # load unet | |
| converted_unet_checkpoint = convert_ldm_unet_checkpoint( | |
| base_model_state_dict, unet.config) | |
| old_value = converted_unet_checkpoint['conv_in.weight'] | |
| new_param = unet_ckpt['conv_in.weight'][:, 4:, :, :].clone().cpu() | |
| new_value = torch.nn.Parameter( | |
| torch.cat((old_value, new_param), dim=1)) | |
| converted_unet_checkpoint['conv_in.weight'] = new_value | |
| unet.load_state_dict(converted_unet_checkpoint, strict=False) | |
| # load vae | |
| converted_vae_checkpoint = convert_ldm_vae_checkpoint( | |
| base_model_state_dict, vae.config, | |
| only_decoder=only_load_vae_decoder, | |
| only_encoder=only_load_vae_encoder,) | |
| need_strict = not (only_load_vae_decoder or only_load_vae_encoder) | |
| vae.load_state_dict(converted_vae_checkpoint, strict=need_strict) | |
| print('Prefix in loaded VAE checkpoint: ') | |
| print(set([k.split('.')[0] | |
| for k in converted_vae_checkpoint.keys()])) | |
| # load text encoder | |
| text_encoder_checkpoint = convert_ldm_clip_checkpoint( | |
| base_model_state_dict) | |
| if text_encoder_checkpoint: | |
| text_encoder.load_state_dict(text_encoder_checkpoint) | |
| print(" <<< Loaded DreamBooth <<<") | |
| if vae_path: | |
| print(' >>> Begin loading VAE >>>') | |
| vae_state_dict = {} | |
| if vae_path.endswith('safetensors'): | |
| with safe_open(vae_path, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| vae_state_dict[key] = f.get_tensor(key) | |
| elif vae_path.endswith('ckpt') or vae_path.endswith('pt'): | |
| vae_state_dict = torch.load(vae_path, map_location='cpu') | |
| if 'state_dict' in vae_state_dict: | |
| vae_state_dict = vae_state_dict['state_dict'] | |
| vae_state_dict = { | |
| f'first_stage_model.{k}': v for k, v in vae_state_dict.items()} | |
| converted_vae_checkpoint = convert_ldm_vae_checkpoint( | |
| vae_state_dict, vae.config, | |
| only_decoder=only_load_vae_decoder, | |
| only_encoder=only_load_vae_encoder,) | |
| print('Prefix in loaded VAE checkpoint: ') | |
| print(set([k.split('.')[0] | |
| for k in converted_vae_checkpoint.keys()])) | |
| need_strict = not (only_load_vae_decoder or only_load_vae_encoder) | |
| vae.load_state_dict(converted_vae_checkpoint, strict=need_strict) | |
| print(" <<< Loaded VAE <<<") | |
| if lora_path: | |
| print(" >>> Begin loading LoRA >>>") | |
| lora_dict = {} | |
| with safe_open(lora_path, framework='pt', device='cpu') as file: | |
| for k in file.keys(): | |
| lora_dict[k] = file.get_tensor(k) | |
| unet, text_encoder = convert_lora_model_level( | |
| lora_dict, unet, text_encoder, alpha=lora_alpha) | |
| print(" <<< Loaded LoRA <<<") | |
| # move model to device | |
| device = torch.device('cuda') | |
| unet_dtype = torch.float16 | |
| tenc_dtype = torch.float16 | |
| vae_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32 | |
| unet = unet.to(device=device, dtype=unet_dtype) | |
| text_encoder = text_encoder.to(device=device, dtype=tenc_dtype) | |
| vae = vae.to(device=device, dtype=vae_dtype) | |
| print(f'Set Unet to {unet_dtype}') | |
| print(f'Set text encoder to {tenc_dtype}') | |
| print(f'Set vae to {vae_dtype}') | |
| if is_xformers_available(): | |
| unet.enable_xformers_memory_efficient_attention() | |
| pipeline = cls(unet=unet, | |
| vae=vae, | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| scheduler=noise_scheduler) | |
| # ip_adapter_path = 'h94/IP-Adapter' | |
| if ip_adapter_path and ip_adapter_scale > 0: | |
| ip_adapter_name = 'ip-adapter_sd15.bin' | |
| # only online repo need subfolder | |
| if not osp.isdir(ip_adapter_path): | |
| subfolder = 'models' | |
| else: | |
| subfolder = '' | |
| pipeline.load_ip_adapter( | |
| ip_adapter_path, subfolder, ip_adapter_name) | |
| pipeline.set_ip_adapter_scale(ip_adapter_scale) | |
| pipeline.use_ip_adapter = True | |
| print(f'Load IP-Adapter, scale: {ip_adapter_scale}') | |
| # text_inversion_path = './models/TextualInversion/easynegative.safetensors' | |
| # if text_inversion_path: | |
| # pipeline.load_textual_inversion(text_inversion_path, 'easynegative') | |
| return pipeline | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError( | |
| "Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt): | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer( | |
| prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| text_embeddings = text_embeddings.view( | |
| bs_embed * num_videos_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| uncond_embeddings = uncond_embeddings.repeat( | |
| 1, num_videos_per_prompt, 1) | |
| uncond_embeddings = uncond_embeddings.view( | |
| batch_size * num_videos_per_prompt, seq_len, -1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def decode_latents(self, latents): | |
| video_length = latents.shape[2] | |
| latents = 1 / 0.18215 * latents | |
| latents = rearrange(latents, "b c f h w -> (b f) c h w") | |
| # video = self.vae.decode(latents).sample | |
| video = [] | |
| for frame_idx in tqdm(range(latents.shape[0])): | |
| video.append(self.vae.decode( | |
| latents[frame_idx:frame_idx+1]).sample) | |
| video = torch.cat(video) | |
| video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) | |
| video = (video / 2 + 0.5).clamp(0, 1) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
| video = video.cpu().float().numpy() | |
| return video | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature( | |
| self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set( | |
| inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, prompt, height, width, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list): | |
| raise ValueError( | |
| f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError( | |
| f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance( | |
| callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min( | |
| int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start:] | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_latents(self, add_noise_time_step, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, video_length, height // | |
| self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| rand_device = "cpu" if device.type == "mps" else device | |
| if isinstance(generator, list): | |
| shape = shape | |
| # shape = (1,) + shape[1:] | |
| latents = [ | |
| torch.randn( | |
| shape, generator=generator[i], device=rand_device, dtype=dtype) | |
| for i in range(batch_size) | |
| ] | |
| latents = torch.cat(latents, dim=0).to(device) | |
| else: | |
| latents = torch.randn( | |
| shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError( | |
| f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| return latents | |
| def encode_image(self, image, device, num_images_per_prompt): | |
| """Encode image for ip-adapter. Copied from | |
| https://github.com/huggingface/diffusers/blob/f9487783228cd500a21555da3346db40e8f05992/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L492-L514 # noqa | |
| """ | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor( | |
| image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave( | |
| num_images_per_prompt, dim=0) | |
| uncond_image_embeds = torch.zeros_like(image_embeds) | |
| return image_embeds, uncond_image_embeds | |
| def __call__( | |
| self, | |
| image: np.ndarray, | |
| prompt: Union[str, List[str]], | |
| video_length: Optional[int], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| global_inf_num: int = 0, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_videos_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, | |
| List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "tensor", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[ | |
| int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| cond_frame: int = 0, | |
| mask_sim_template_idx: int = 0, | |
| ip_adapter_scale: float = 0, | |
| strength: float = 1, | |
| is_real_img: bool = False, | |
| progress_fn=None, | |
| **kwargs, | |
| ): | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| assert strength > 0 and strength <= 1, ( | |
| f'"strength" for img2vid must in (0, 1]. But receive {strength}.') | |
| # Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # Define call parameters | |
| # batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| batch_size = 1 | |
| if latents is not None: | |
| batch_size = latents.shape[0] | |
| if isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # Encode input prompt | |
| prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
| if negative_prompt is None: | |
| negative_prompt = DEFAULT_N_PROMPT | |
| negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [ | |
| negative_prompt] * batch_size | |
| text_embeddings = self._encode_prompt( | |
| prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt | |
| ) | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_timesteps( | |
| num_inference_steps, strength, device) | |
| latent_timestep = timesteps[:1].repeat(batch_size) | |
| # Prepare latent variables | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| latent_timestep, | |
| batch_size * num_videos_per_prompt, | |
| 4, | |
| video_length, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| shape = (batch_size, num_channels_latents, video_length, height // | |
| self.vae_scale_factor, width // self.vae_scale_factor) | |
| raw_image = image.copy() | |
| image = torch.from_numpy(image)[None, ...].permute(0, 3, 1, 2) | |
| image = image / 255 # [0, 1] | |
| image = image * 2 - 1 # [-1, 1] | |
| image = image.to(device=device, dtype=self.vae.dtype) | |
| if isinstance(generator, list): | |
| image_latent = [ | |
| self.vae.encode(image[k: k + 1]).latent_dist.sample(generator[k]) for k in range(batch_size) | |
| ] | |
| image_latent = torch.cat(image_latent, dim=0) | |
| else: | |
| image_latent = self.vae.encode(image).latent_dist.sample(generator) | |
| image_latent = image_latent.to(device=device, dtype=self.unet.dtype) | |
| image_latent = torch.nn.functional.interpolate( | |
| image_latent, size=[shape[-2], shape[-1]]) | |
| image_latent_padding = image_latent.clone() * 0.18215 | |
| mask = torch.zeros((shape[0], 1, shape[2], shape[3], shape[4])).to( | |
| device=device, dtype=self.unet.dtype) | |
| # prepare mask | |
| # NOTE: pass specific st_motion for real image style transfer | |
| if mask_sim_template_idx == -1 and is_real_img: | |
| mask_coef = prepare_mask_coef_by_statistics( | |
| video_length, cond_frame, mask_sim_template_idx, self.st_motion) | |
| else: | |
| mask_coef = prepare_mask_coef_by_statistics( | |
| video_length, cond_frame, mask_sim_template_idx) | |
| masked_image = torch.zeros(shape[0], 4, shape[2], shape[3], shape[4]).to( | |
| device=device, dtype=self.unet.dtype) | |
| for f in range(video_length): | |
| mask[:, :, f, :, :] = mask_coef[f] | |
| masked_image[:, :, f, :, :] = image_latent_padding.clone() | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask | |
| masked_image = torch.cat( | |
| [masked_image] * 2) if do_classifier_free_guidance else masked_image | |
| # Denoising loop | |
| num_warmup_steps = len(timesteps) - \ | |
| num_inference_steps * self.scheduler.order | |
| # prepare for ip-adapter | |
| if self.use_ip_adapter: | |
| image_embeds, neg_image_embeds = self.encode_image( | |
| raw_image, device, num_videos_per_prompt) | |
| image_embeds = torch.cat([neg_image_embeds, image_embeds]) | |
| image_embeds = image_embeds.to(device, self.unet.dtype) | |
| self.set_ip_adapter_scale(ip_adapter_scale) | |
| print(f'Set IP-Adapter Scale as {ip_adapter_scale}') | |
| else: | |
| image_embeds = None | |
| # prepare for latents if strength < 1, add convert gaussian latent to masked_img and add noise | |
| if strength < 1: | |
| noise = torch.randn_like(latents) | |
| latents = self.scheduler.add_noise( | |
| masked_image[0], noise, timesteps[0]) | |
| if progress_fn is None: | |
| progress_bar = tqdm(timesteps) | |
| terminal_pbar = None | |
| else: | |
| progress_bar = progress_fn.tqdm(timesteps) | |
| terminal_pbar = tqdm(total=len(timesteps)) | |
| for i, t in enumerate(progress_bar): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat( | |
| [latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input( | |
| latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| mask, | |
| masked_image, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| image_embeds=image_embeds | |
| )['sample'] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * \ | |
| (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if terminal_pbar is not None: | |
| terminal_pbar.update(1) | |
| # Post-processing | |
| video = self.decode_latents(latents.to(device, dtype=self.vae.dtype)) | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| video = torch.from_numpy(video) | |
| if not return_dict: | |
| return video | |
| return AnimationPipelineOutput(videos=video) | |