PIA / animatediff /data /dataset_web.py
LeoXing1996
init repo for fg
a001281
import decord
import cv2
import os, io, csv, torch, math, random
from typing import Optional
from einops import rearrange
import numpy as np
from decord import VideoReader
from petrel_client.client import Client
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms
from torch.utils.data.distributed import DistributedSampler
import animatediff.data.video_transformer as video_transforms
from animatediff.utils.util import zero_rank_print, detect_edges, prepare_mask_coef_by_score
def get_score(video_data,
cond_frame_idx,
weight=[1.0, 1.0, 1.0, 1.0],
use_edge=True):
"""
Similar to get_score under utils/util.py/detect_edges
"""
"""
the shape of video_data is f c h w, np.ndarray
"""
h, w = video_data.shape[1], video_data.shape[2]
cond_frame = video_data[cond_frame_idx]
cond_hsv_list = list(
cv2.split(
cv2.cvtColor(cond_frame.astype(np.float32), cv2.COLOR_RGB2HSV)))
if use_edge:
cond_frame_lum = cond_hsv_list[-1]
cond_frame_edge = detect_edges(cond_frame_lum.astype(np.uint8))
cond_hsv_list.append(cond_frame_edge)
score_sum = []
for frame_idx in range(video_data.shape[0]):
frame = video_data[frame_idx]
hsv_list = list(
cv2.split(cv2.cvtColor(frame.astype(np.float32),
cv2.COLOR_RGB2HSV)))
if use_edge:
frame_img_lum = hsv_list[-1]
frame_img_edge = detect_edges(lum=frame_img_lum.astype(np.uint8))
hsv_list.append(frame_img_edge)
hsv_diff = [
np.abs(hsv_list[c] - cond_hsv_list[c]) for c in range(len(weight))
]
hsv_mse = [np.sum(hsv_diff[c]) * weight[c] for c in range(len(weight))]
score_sum.append(sum(hsv_mse) / (h * w) / (sum(weight)))
return score_sum
class WebVid10M(Dataset):
def __init__(
self,
csv_path,
sample_n_frames, sample_stride,
sample_size=[320,512],
conf_path="~/petreloss.conf",
static_video=False,
is_image=False,
):
zero_rank_print(f"initializing ceph client ...")
self._client = Client(conf_path=conf_path, enable_mc=True)
self.sample_n_frames = sample_n_frames
self.sample_stride = sample_stride
self.temporal_sampler = video_transforms.TemporalRandomCrop(sample_n_frames * sample_stride)
self.static_video = static_video
self.is_image = is_image
zero_rank_print(f"(~1 mins) loading annotations from {csv_path} ...")
with open(csv_path, 'r') as csvfile:
self.dataset = list(csv.DictReader(csvfile))
self.length = len(self.dataset)
zero_rank_print(f"data scale: {self.length}")
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
self.pixel_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Resize(sample_size[0]),
transforms.CenterCrop(sample_size),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
])
def get_batch(self, idx):
video_dict = self.dataset[idx]
videoid, name, page_dir = video_dict['videoid'], video_dict['name'], video_dict['page_dir']
ceph_dir = f"webvideo:s3://WebVid10M/{page_dir}/{videoid}.mp4"
video_bytes = self._client.Get(ceph_dir)
video_bytes = io.BytesIO(video_bytes)
# ensure not reading zero byte
assert video_bytes.getbuffer().nbytes != 0
video_reader = VideoReader(video_bytes)
total_frames = len(video_reader)
if not self.is_image:
if self.static_video:
frame_indice = random.randint(0, total_frames-1)
frame_indice = np.linspace(frame_indice, frame_indice, self.sample_n_frames, dtype=int)
else:
start_frame_ind, end_frame_ind = self.temporal_sampler(total_frames)
assert end_frame_ind - start_frame_ind >= self.sample_n_frames
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.sample_n_frames, dtype=int)
else:
frame_indice = [random.randint(0, total_frames - 1)]
pixel_values_np = video_reader.get_batch(frame_indice).asnumpy()
cond_frames = random.randint(0, self.sample_n_frames - 1)
# f h w c -> f c h w
pixel_values = torch.from_numpy(pixel_values_np).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
del video_reader
if self.is_image:
pixel_values = pixel_values[0]
return pixel_values, name, cond_frames, videoid
def __len__(self):
return self.length
def __getitem__(self, idx):
while True:
try:
video, name, cond_frames, videoid = self.get_batch(idx)
break
except Exception as e:
# zero_rank_print(e)
idx = random.randint(0, self.length-1)
video = self.pixel_transforms(video)
video_ = video.clone().permute(0, 2, 3, 1).numpy() / 2 + 0.5
video_ = video_ * 255
#video_ = video_.astype(np.uint8)
score = get_score(video_, cond_frame_idx=cond_frames)
del video_
sample = dict(pixel_values=video, text=name, score=score, cond_frames=cond_frames, vid=videoid)
return sample
if __name__ == "__main__":
dataset = WebVid10M(
csv_path="results_10M_train.csv",
sample_size=(320,512),
sample_n_frames=16,
sample_stride=4,
static_video=False,
is_image=False,
)
distributed_sampler = DistributedSampler(
dataset,
num_replicas=1,
rank=0,
shuffle=True,
seed=5,
)
batch_size = 1
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, num_workers=0, sampler=distributed_sampler)
STATISTIC = [[0., 0.],
[0.3535855, 24.23687346],
[0.91609545, 30.65091947],
[1.41165152, 34.40093286],
[1.56943881, 36.99639585],
[1.73182842, 39.42044163],
[1.82733002, 40.94703526],
[1.88060527, 42.66233244],
[1.96208071, 43.73070788],
[2.02723091, 44.25965378],
[2.10820894, 45.66120213],
[2.21115041, 46.29561324],
[2.23412351, 47.08810863],
[2.29430165, 47.9515062],
[2.32986362, 48.69085638],
[2.37310751, 49.19931439]]
for idx, batch in enumerate(dataloader):
pixel_values, texts, vid = batch['pixel_values'], batch['text'], batch['vid']
pixel_values = (pixel_values.clone()) / 2. + 0.5
pixel_values*= 255
score = get_score(pixel_values)
cond_frames = [0] * len(batch_size)
score = prepare_mask_coef_by_score(pixel_values, cond_frames, statistic=STATISTIC)
print(f'num: {idx}, diff: {score}')