PIA / animatediff /pipelines /i2v_pipeline.py
LeoXing1996
init repo for fg
a001281
raw
history blame
34.1 kB
# Adapted from https://github.com/showlab/Tune-A-Video/blob/main/tuneavideo/pipelines/pipeline_tuneavideo.py
import inspect
import os.path as osp
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from diffusers.configuration_utils import FrozenDict
from diffusers.loaders import IPAdapterMixin
from diffusers.models import AutoencoderKL
from diffusers.pipelines import DiffusionPipeline
from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler, LMSDiscreteScheduler,
PNDMScheduler)
from diffusers.utils import (BaseOutput, deprecate, is_accelerate_available,
logging)
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from omegaconf import OmegaConf
from packaging import version
from safetensors import safe_open
from tqdm import tqdm
from transformers import (CLIPImageProcessor, CLIPTextModel, CLIPTokenizer,
CLIPVisionModelWithProjection)
from animatediff.models.resnet import InflatedConv3d
from animatediff.models.unet import UNet3DConditionModel
from animatediff.utils.convert_from_ckpt import (convert_ldm_clip_checkpoint,
convert_ldm_unet_checkpoint,
convert_ldm_vae_checkpoint)
from animatediff.utils.convert_lora_safetensor_to_diffusers import \
convert_lora_model_level
from animatediff.utils.util import prepare_mask_coef_by_statistics
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
DEFAULT_N_PROMPT = ('wrong white balance, dark, sketches,worst quality,'
'low quality, deformed, distorted, disfigured, bad eyes, '
'wrong lips,weird mouth, bad teeth, mutated hands and fingers, '
'bad anatomy,wrong anatomy, amputation, extra limb, '
'missing limb, floating,limbs, disconnected limbs, mutation, '
'ugly, disgusting, bad_pictures, negative_hand-neg')
@dataclass
class AnimationPipelineOutput(BaseOutput):
videos: Union[torch.Tensor, np.ndarray]
class I2VPipeline(DiffusionPipeline, IPAdapterMixin):
_optional_components = []
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet3DConditionModel,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
feature_extractor: CLIPImageProcessor = None,
image_encoder: CLIPVisionModelWithProjection = None,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0",
deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0",
deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(
unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0",
deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (
len(self.vae.config.block_out_channels) - 1)
self.use_ip_adapter = False
self.st_motion = None
def set_st_motion(self, st_motion: List):
"""Set style transfer motion."""
self.st_motion = st_motion
@classmethod
def build_pipeline(cls,
base_cfg,
base_model: str,
unet_path: str,
dreambooth_path: Optional[str] = None,
lora_path: Optional[str] = None,
lora_alpha: int = 0,
vae_path: Optional[str] = None,
ip_adapter_path: Optional[str] = None,
ip_adapter_scale: float = 0.0,
only_load_vae_decoder: bool = False,
only_load_vae_encoder: bool = False) -> 'I2VPipeline':
"""Method to build pipeline in a faster way~
Args:
base_cfg: The config to build model
base_mode: The model id to initialize StableDiffusion
unet_path: Path for i2v unet
dreambooth_path: path for dreambooth model
lora_path: path for lora model
lora_alpha: value for lora scale
only_load_vae_decoder: Only load VAE decoder from dreambooth / VAE ckpt
and maitain encoder as original.
"""
# build unet
unet = UNet3DConditionModel.from_pretrained_2d(
base_model, subfolder="unet",
unet_additional_kwargs=OmegaConf.to_container(
base_cfg.unet_additional_kwargs))
old_weights = unet.conv_in.weight
old_bias = unet.conv_in.bias
new_conv1 = InflatedConv3d(
9, old_weights.shape[0],
kernel_size=unet.conv_in.kernel_size,
stride=unet.conv_in.stride,
padding=unet.conv_in.padding,
bias=True if old_bias is not None else False)
param = torch.zeros((320, 5, 3, 3), requires_grad=True)
new_conv1.weight = torch.nn.Parameter(
torch.cat((old_weights, param), dim=1))
if old_bias is not None:
new_conv1.bias = old_bias
unet.conv_in = new_conv1
unet.config["in_channels"] = 9
unet_ckpt = torch.load(unet_path, map_location='cpu')
# filter unet ckpt, only load motion module and conv_inv
unet_ckpt = {k: v for k, v in unet_ckpt.items()
if 'motion_module' in k or 'conv_in' in k}
print(f'Unet prefix: ')
print(set([k.split('.')[0] for k in unet_ckpt.keys()]))
unet.load_state_dict(unet_ckpt, strict=False)
# load vae, tokenizer, text encoder
vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae")
tokenizer = CLIPTokenizer.from_pretrained(
base_model, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(
base_model, subfolder="text_encoder")
noise_scheduler = DDIMScheduler(
**OmegaConf.to_container(base_cfg.noise_scheduler_kwargs))
if dreambooth_path and dreambooth_path.upper() != 'NONE':
print(" >>> Begin loading DreamBooth >>>")
base_model_state_dict = {}
with safe_open(dreambooth_path, framework="pt", device="cpu") as f:
for key in f.keys():
base_model_state_dict[key] = f.get_tensor(key)
# load unet
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
base_model_state_dict, unet.config)
old_value = converted_unet_checkpoint['conv_in.weight']
new_param = unet_ckpt['conv_in.weight'][:, 4:, :, :].clone().cpu()
new_value = torch.nn.Parameter(
torch.cat((old_value, new_param), dim=1))
converted_unet_checkpoint['conv_in.weight'] = new_value
unet.load_state_dict(converted_unet_checkpoint, strict=False)
# load vae
converted_vae_checkpoint = convert_ldm_vae_checkpoint(
base_model_state_dict, vae.config,
only_decoder=only_load_vae_decoder,
only_encoder=only_load_vae_encoder,)
need_strict = not (only_load_vae_decoder or only_load_vae_encoder)
vae.load_state_dict(converted_vae_checkpoint, strict=need_strict)
print('Prefix in loaded VAE checkpoint: ')
print(set([k.split('.')[0]
for k in converted_vae_checkpoint.keys()]))
# load text encoder
text_encoder_checkpoint = convert_ldm_clip_checkpoint(
base_model_state_dict)
if text_encoder_checkpoint:
text_encoder.load_state_dict(text_encoder_checkpoint)
print(" <<< Loaded DreamBooth <<<")
if vae_path:
print(' >>> Begin loading VAE >>>')
vae_state_dict = {}
if vae_path.endswith('safetensors'):
with safe_open(vae_path, framework="pt", device="cpu") as f:
for key in f.keys():
vae_state_dict[key] = f.get_tensor(key)
elif vae_path.endswith('ckpt') or vae_path.endswith('pt'):
vae_state_dict = torch.load(vae_path, map_location='cpu')
if 'state_dict' in vae_state_dict:
vae_state_dict = vae_state_dict['state_dict']
vae_state_dict = {
f'first_stage_model.{k}': v for k, v in vae_state_dict.items()}
converted_vae_checkpoint = convert_ldm_vae_checkpoint(
vae_state_dict, vae.config,
only_decoder=only_load_vae_decoder,
only_encoder=only_load_vae_encoder,)
print('Prefix in loaded VAE checkpoint: ')
print(set([k.split('.')[0]
for k in converted_vae_checkpoint.keys()]))
need_strict = not (only_load_vae_decoder or only_load_vae_encoder)
vae.load_state_dict(converted_vae_checkpoint, strict=need_strict)
print(" <<< Loaded VAE <<<")
if lora_path:
print(" >>> Begin loading LoRA >>>")
lora_dict = {}
with safe_open(lora_path, framework='pt', device='cpu') as file:
for k in file.keys():
lora_dict[k] = file.get_tensor(k)
unet, text_encoder = convert_lora_model_level(
lora_dict, unet, text_encoder, alpha=lora_alpha)
print(" <<< Loaded LoRA <<<")
# move model to device
device = torch.device('cuda')
unet_dtype = torch.float16
tenc_dtype = torch.float16
vae_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
unet = unet.to(device=device, dtype=unet_dtype)
text_encoder = text_encoder.to(device=device, dtype=tenc_dtype)
vae = vae.to(device=device, dtype=vae_dtype)
print(f'Set Unet to {unet_dtype}')
print(f'Set text encoder to {tenc_dtype}')
print(f'Set vae to {vae_dtype}')
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
pipeline = cls(unet=unet,
vae=vae,
tokenizer=tokenizer,
text_encoder=text_encoder,
scheduler=noise_scheduler)
# ip_adapter_path = 'h94/IP-Adapter'
if ip_adapter_path and ip_adapter_scale > 0:
ip_adapter_name = 'ip-adapter_sd15.bin'
# only online repo need subfolder
if not osp.isdir(ip_adapter_path):
subfolder = 'models'
else:
subfolder = ''
pipeline.load_ip_adapter(
ip_adapter_path, subfolder, ip_adapter_name)
pipeline.set_ip_adapter_scale(ip_adapter_scale)
pipeline.use_ip_adapter = True
print(f'Load IP-Adapter, scale: {ip_adapter_scale}')
# text_inversion_path = './models/TextualInversion/easynegative.safetensors'
# if text_inversion_path:
# pipeline.load_textual_inversion(text_inversion_path, 'easynegative')
return pipeline
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError(
"Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
text_embeddings = text_embeddings.view(
bs_embed * num_videos_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(
1, num_videos_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(
batch_size * num_videos_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / 0.18215 * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
# video = self.vae.decode(latents).sample
video = []
for frame_idx in tqdm(range(latents.shape[0])):
video.append(self.vae.decode(
latents[frame_idx:frame_idx+1]).sample)
video = torch.cat(video)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(
self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, prompt, height, width, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(
callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(
int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, add_noise_time_step, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, video_length, height //
self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
rand_device = "cpu" if device.type == "mps" else device
if isinstance(generator, list):
shape = shape
# shape = (1,) + shape[1:]
latents = [
torch.randn(
shape, generator=generator[i], device=rand_device, dtype=dtype)
for i in range(batch_size)
]
latents = torch.cat(latents, dim=0).to(device)
else:
latents = torch.randn(
shape, generator=generator, device=rand_device, dtype=dtype).to(device)
else:
if latents.shape != shape:
raise ValueError(
f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
return latents
def encode_image(self, image, device, num_images_per_prompt):
"""Encode image for ip-adapter. Copied from
https://github.com/huggingface/diffusers/blob/f9487783228cd500a21555da3346db40e8f05992/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L492-L514 # noqa
"""
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(
image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
image_embeds = self.image_encoder(image).image_embeds
image_embeds = image_embeds.repeat_interleave(
num_images_per_prompt, dim=0)
uncond_image_embeds = torch.zeros_like(image_embeds)
return image_embeds, uncond_image_embeds
@torch.no_grad()
def __call__(
self,
image: np.ndarray,
prompt: Union[str, List[str]],
video_length: Optional[int],
height: Optional[int] = None,
width: Optional[int] = None,
global_inf_num: int = 0,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_videos_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator,
List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "tensor",
return_dict: bool = True,
callback: Optional[Callable[[
int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
cond_frame: int = 0,
mask_sim_template_idx: int = 0,
ip_adapter_scale: float = 0,
strength: float = 1,
is_real_img: bool = False,
progress_fn=None,
**kwargs,
):
# Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
assert strength > 0 and strength <= 1, (
f'"strength" for img2vid must in (0, 1]. But receive {strength}.')
# Check inputs. Raise error if not correct
self.check_inputs(prompt, height, width, callback_steps)
# Define call parameters
# batch_size = 1 if isinstance(prompt, str) else len(prompt)
batch_size = 1
if latents is not None:
batch_size = latents.shape[0]
if isinstance(prompt, list):
batch_size = len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# Encode input prompt
prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size
if negative_prompt is None:
negative_prompt = DEFAULT_N_PROMPT
negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [
negative_prompt] * batch_size
text_embeddings = self._encode_prompt(
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
)
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size)
# Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
latent_timestep,
batch_size * num_videos_per_prompt,
4,
video_length,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
shape = (batch_size, num_channels_latents, video_length, height //
self.vae_scale_factor, width // self.vae_scale_factor)
raw_image = image.copy()
image = torch.from_numpy(image)[None, ...].permute(0, 3, 1, 2)
image = image / 255 # [0, 1]
image = image * 2 - 1 # [-1, 1]
image = image.to(device=device, dtype=self.vae.dtype)
if isinstance(generator, list):
image_latent = [
self.vae.encode(image[k: k + 1]).latent_dist.sample(generator[k]) for k in range(batch_size)
]
image_latent = torch.cat(image_latent, dim=0)
else:
image_latent = self.vae.encode(image).latent_dist.sample(generator)
image_latent = image_latent.to(device=device, dtype=self.unet.dtype)
image_latent = torch.nn.functional.interpolate(
image_latent, size=[shape[-2], shape[-1]])
image_latent_padding = image_latent.clone() * 0.18215
mask = torch.zeros((shape[0], 1, shape[2], shape[3], shape[4])).to(
device=device, dtype=self.unet.dtype)
# prepare mask
# NOTE: pass specific st_motion for real image style transfer
if mask_sim_template_idx == -1 and is_real_img:
mask_coef = prepare_mask_coef_by_statistics(
video_length, cond_frame, mask_sim_template_idx, self.st_motion)
else:
mask_coef = prepare_mask_coef_by_statistics(
video_length, cond_frame, mask_sim_template_idx)
masked_image = torch.zeros(shape[0], 4, shape[2], shape[3], shape[4]).to(
device=device, dtype=self.unet.dtype)
for f in range(video_length):
mask[:, :, f, :, :] = mask_coef[f]
masked_image[:, :, f, :, :] = image_latent_padding.clone()
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image = torch.cat(
[masked_image] * 2) if do_classifier_free_guidance else masked_image
# Denoising loop
num_warmup_steps = len(timesteps) - \
num_inference_steps * self.scheduler.order
# prepare for ip-adapter
if self.use_ip_adapter:
image_embeds, neg_image_embeds = self.encode_image(
raw_image, device, num_videos_per_prompt)
image_embeds = torch.cat([neg_image_embeds, image_embeds])
image_embeds = image_embeds.to(device, self.unet.dtype)
self.set_ip_adapter_scale(ip_adapter_scale)
print(f'Set IP-Adapter Scale as {ip_adapter_scale}')
else:
image_embeds = None
# prepare for latents if strength < 1, add convert gaussian latent to masked_img and add noise
if strength < 1:
noise = torch.randn_like(latents)
latents = self.scheduler.add_noise(
masked_image[0], noise, timesteps[0])
if progress_fn is None:
progress_bar = tqdm(timesteps)
terminal_pbar = None
else:
progress_bar = progress_fn.tqdm(timesteps)
terminal_pbar = tqdm(total=len(timesteps))
for i, t in enumerate(progress_bar):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat(
[latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
mask,
masked_image,
t,
encoder_hidden_states=text_embeddings,
image_embeds=image_embeds
)['sample']
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if terminal_pbar is not None:
terminal_pbar.update(1)
# Post-processing
video = self.decode_latents(latents.to(device, dtype=self.vae.dtype))
# Convert to tensor
if output_type == "tensor":
video = torch.from_numpy(video)
if not return_dict:
return video
return AnimationPipelineOutput(videos=video)