Spaces:
Runtime error
Runtime error
import decord | |
import cv2 | |
import os, io, csv, torch, math, random | |
from typing import Optional | |
from einops import rearrange | |
import numpy as np | |
from decord import VideoReader | |
from petrel_client.client import Client | |
from torch.utils.data.dataset import Dataset | |
import torchvision.transforms as transforms | |
from torch.utils.data.distributed import DistributedSampler | |
import animatediff.data.video_transformer as video_transforms | |
from animatediff.utils.util import zero_rank_print, detect_edges, prepare_mask_coef_by_score | |
def get_score(video_data, | |
cond_frame_idx, | |
weight=[1.0, 1.0, 1.0, 1.0], | |
use_edge=True): | |
""" | |
Similar to get_score under utils/util.py/detect_edges | |
""" | |
""" | |
the shape of video_data is f c h w, np.ndarray | |
""" | |
h, w = video_data.shape[1], video_data.shape[2] | |
cond_frame = video_data[cond_frame_idx] | |
cond_hsv_list = list( | |
cv2.split( | |
cv2.cvtColor(cond_frame.astype(np.float32), cv2.COLOR_RGB2HSV))) | |
if use_edge: | |
cond_frame_lum = cond_hsv_list[-1] | |
cond_frame_edge = detect_edges(cond_frame_lum.astype(np.uint8)) | |
cond_hsv_list.append(cond_frame_edge) | |
score_sum = [] | |
for frame_idx in range(video_data.shape[0]): | |
frame = video_data[frame_idx] | |
hsv_list = list( | |
cv2.split(cv2.cvtColor(frame.astype(np.float32), | |
cv2.COLOR_RGB2HSV))) | |
if use_edge: | |
frame_img_lum = hsv_list[-1] | |
frame_img_edge = detect_edges(lum=frame_img_lum.astype(np.uint8)) | |
hsv_list.append(frame_img_edge) | |
hsv_diff = [ | |
np.abs(hsv_list[c] - cond_hsv_list[c]) for c in range(len(weight)) | |
] | |
hsv_mse = [np.sum(hsv_diff[c]) * weight[c] for c in range(len(weight))] | |
score_sum.append(sum(hsv_mse) / (h * w) / (sum(weight))) | |
return score_sum | |
class WebVid10M(Dataset): | |
def __init__( | |
self, | |
csv_path, | |
sample_n_frames, sample_stride, | |
sample_size=[320,512], | |
conf_path="~/petreloss.conf", | |
static_video=False, | |
is_image=False, | |
): | |
zero_rank_print(f"initializing ceph client ...") | |
self._client = Client(conf_path=conf_path, enable_mc=True) | |
self.sample_n_frames = sample_n_frames | |
self.sample_stride = sample_stride | |
self.temporal_sampler = video_transforms.TemporalRandomCrop(sample_n_frames * sample_stride) | |
self.static_video = static_video | |
self.is_image = is_image | |
zero_rank_print(f"(~1 mins) loading annotations from {csv_path} ...") | |
with open(csv_path, 'r') as csvfile: | |
self.dataset = list(csv.DictReader(csvfile)) | |
self.length = len(self.dataset) | |
zero_rank_print(f"data scale: {self.length}") | |
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size) | |
self.pixel_transforms = transforms.Compose([ | |
transforms.RandomHorizontalFlip(), | |
transforms.Resize(sample_size[0]), | |
transforms.CenterCrop(sample_size), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
]) | |
def get_batch(self, idx): | |
video_dict = self.dataset[idx] | |
videoid, name, page_dir = video_dict['videoid'], video_dict['name'], video_dict['page_dir'] | |
ceph_dir = f"webvideo:s3://WebVid10M/{page_dir}/{videoid}.mp4" | |
video_bytes = self._client.Get(ceph_dir) | |
video_bytes = io.BytesIO(video_bytes) | |
# ensure not reading zero byte | |
assert video_bytes.getbuffer().nbytes != 0 | |
video_reader = VideoReader(video_bytes) | |
total_frames = len(video_reader) | |
if not self.is_image: | |
if self.static_video: | |
frame_indice = random.randint(0, total_frames-1) | |
frame_indice = np.linspace(frame_indice, frame_indice, self.sample_n_frames, dtype=int) | |
else: | |
start_frame_ind, end_frame_ind = self.temporal_sampler(total_frames) | |
assert end_frame_ind - start_frame_ind >= self.sample_n_frames | |
frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.sample_n_frames, dtype=int) | |
else: | |
frame_indice = [random.randint(0, total_frames - 1)] | |
pixel_values_np = video_reader.get_batch(frame_indice).asnumpy() | |
cond_frames = random.randint(0, self.sample_n_frames - 1) | |
# f h w c -> f c h w | |
pixel_values = torch.from_numpy(pixel_values_np).permute(0, 3, 1, 2).contiguous() | |
pixel_values = pixel_values / 255. | |
del video_reader | |
if self.is_image: | |
pixel_values = pixel_values[0] | |
return pixel_values, name, cond_frames, videoid | |
def __len__(self): | |
return self.length | |
def __getitem__(self, idx): | |
while True: | |
try: | |
video, name, cond_frames, videoid = self.get_batch(idx) | |
break | |
except Exception as e: | |
# zero_rank_print(e) | |
idx = random.randint(0, self.length-1) | |
video = self.pixel_transforms(video) | |
video_ = video.clone().permute(0, 2, 3, 1).numpy() / 2 + 0.5 | |
video_ = video_ * 255 | |
#video_ = video_.astype(np.uint8) | |
score = get_score(video_, cond_frame_idx=cond_frames) | |
del video_ | |
sample = dict(pixel_values=video, text=name, score=score, cond_frames=cond_frames, vid=videoid) | |
return sample | |
if __name__ == "__main__": | |
dataset = WebVid10M( | |
csv_path="results_10M_train.csv", | |
sample_size=(320,512), | |
sample_n_frames=16, | |
sample_stride=4, | |
static_video=False, | |
is_image=False, | |
) | |
distributed_sampler = DistributedSampler( | |
dataset, | |
num_replicas=1, | |
rank=0, | |
shuffle=True, | |
seed=5, | |
) | |
batch_size = 1 | |
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, num_workers=0, sampler=distributed_sampler) | |
STATISTIC = [[0., 0.], | |
[0.3535855, 24.23687346], | |
[0.91609545, 30.65091947], | |
[1.41165152, 34.40093286], | |
[1.56943881, 36.99639585], | |
[1.73182842, 39.42044163], | |
[1.82733002, 40.94703526], | |
[1.88060527, 42.66233244], | |
[1.96208071, 43.73070788], | |
[2.02723091, 44.25965378], | |
[2.10820894, 45.66120213], | |
[2.21115041, 46.29561324], | |
[2.23412351, 47.08810863], | |
[2.29430165, 47.9515062], | |
[2.32986362, 48.69085638], | |
[2.37310751, 49.19931439]] | |
for idx, batch in enumerate(dataloader): | |
pixel_values, texts, vid = batch['pixel_values'], batch['text'], batch['vid'] | |
pixel_values = (pixel_values.clone()) / 2. + 0.5 | |
pixel_values*= 255 | |
score = get_score(pixel_values) | |
cond_frames = [0] * len(batch_size) | |
score = prepare_mask_coef_by_score(pixel_values, cond_frames, statistic=STATISTIC) | |
print(f'num: {idx}, diff: {score}') | |