MyApp / app.py
LeopoldoSchiavi's picture
Update app.py
64edb04 verified
import pickle
import pandas as pd
import shap
from shap.plots._force_matplotlib import draw_additive_plot
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
# load the model from disk
loaded_model = pickle.load(open("coupon_xgb.pkl", 'rb'))
# Setup SHAP
explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS.
# Create the main function for server
def main_func(destination,passanger,weather,time,expiration,gender,age,maritalStatus,education,occupation,income,Bar,CoffeeHouse,CarryAway,RestaurantLessThan20,Restaurant20To50,coupon,has_children,toCoupon_GEQ5min,toCoupon_GEQ15min,toCoupon_GEQ25min,direction_same,direction_opp,temperature):
new_row = pd.DataFrame.from_dict({'destination':destination,'passanger':passanger,
'weather':weather,'time':time,'expiration':expiration,
'gender':gender,'age':age,'maritalStatus':maritalStatus,
'education':education,'occupation':occupation,'income':income,
'Bar':Bar,'CoffeeHouse':CoffeeHouse,'CarryAway':CarryAway,
'RestaurantLessThan20':RestaurantLessThan20,'Restaurant20To50':Restaurant20To50,'coupon':coupon,
'has_children':has_children,'toCoupon_GEQ5min':toCoupon_GEQ5min,'toCoupon_GEQ15min':toCoupon_GEQ15min,
'toCoupon_GEQ25min':toCoupon_GEQ25min,'direction_same':direction_same,'direction_opp':direction_opp,
'temperature':temperature}, orient = 'index').transpose()
prob = loaded_model.predict_proba(new_row)
shap_values = explainer(new_row)
# plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False)
# plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False)
plot = shap.plots.bar(shap_values[0], max_display=24, order=shap.Explanation.abs, show_data='auto', show=False)
plt.tight_layout()
local_plot = plt.gcf()
plt.rcParams['figure.figsize'] = 6,4
plt.close()
return {"Leave": float(prob[0][0]), "Stay": 1-float(prob[0][0])}, local_plot
# Create the UI
title = "**Employee Turnover Predictor & Interpreter** 🪐"
description1 = """
This app takes six inputs about employees' satisfaction with different aspects of their work (such as work-life balance, ...) and predicts whether the employee intends to stay with the employer or leave. There are two outputs from the app: 1- the predicted probability of stay or leave, 2- Shapley's force-plot which visualizes the extent to which each factor impacts the stay/ leave prediction.
"""
description2 = """
To use the app, click on one of the examples, or adjust the values of the six employee satisfaction factors, and click on Analyze. ✨
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
# gr.Markdown("""![marketing](types-of-employee-turnover.jpg)""")
gr.Markdown(description1)
gr.Markdown("""---""")
gr.Markdown(description2)
gr.Markdown("""---""")
with gr.Row():
with gr.Column():
destination = gr.Slider(label="destination Score", minimum=1, maximum=5, value=4, step=.1)
passanger = gr.Slider(label="passanger Score", minimum=1, maximum=5, value=4, step=.1)
weather = gr.Slider(label="weather Score", minimum=1, maximum=5, value=4, step=.1)
time = gr.Slider(label="time Score", minimum=1, maximum=5, value=4, step=.1)
expiration = gr.Slider(label="expiration Score", minimum=1, maximum=5, value=4, step=.1)
gender = gr.Slider(label="gender Score", minimum=1, maximum=5, value=4, step=.1)
age = gr.Slider(label="age Score", minimum=1, maximum=5, value=4, step=.1)
maritalStatus = gr.Slider(label="maritalStatus Score", minimum=1, maximum=5, value=4, step=.1)
education = gr.Slider(label="education Score", minimum=1, maximum=5, value=4, step=.1)
occupation = gr.Slider(label="occupation Score", minimum=1, maximum=5, value=4, step=.1)
income = gr.Slider(label="income Score", minimum=1, maximum=5, value=4, step=.1)
Bar = gr.Slider(label="Bar Score", minimum=1, maximum=5, value=4, step=.1)
CoffeeHouse = gr.Slider(label="CoffeeHouse Score", minimum=1, maximum=5, value=4, step=.1)
CarryAway = gr.Slider(label="CarryAway Score", minimum=1, maximum=5, value=4, step=.1)
RestaurantLessThan20 = gr.Slider(label="RestaurantLessThan20 Score", minimum=1, maximum=5, value=4, step=.1)
Restaurant20To50 = gr.Slider(label="Restaurant20To50 Score", minimum=1, maximum=5, value=4, step=.1)
coupon = gr.Slider(label="Coupon Score", minimum=1, maximum=5, value=4, step=.1)
has_children = gr.Slider(label="Has_children Score", minimum=1, maximum=5, value=4, step=.1)
toCoupon_GEQ5min = gr.Slider(label="toCoupon_GEQ5min Score", minimum=1, maximum=5, value=4, step=.1)
toCoupon_GEQ15min = gr.Slider(label="toCoupon_GEQ15min Score", minimum=1, maximum=5, value=4, step=.1)
toCoupon_GEQ25min = gr.Slider(label="toCoupon_GEQ25min Score", minimum=1, maximum=5, value=4, step=.1)
direction_same = gr.Slider(label="direction_same Score", minimum=1, maximum=5, value=4, step=.1)
direction_opp = gr.Slider(label="direction_opp Score", minimum=1, maximum=5, value=4, step=.1)
temperature = gr.Slider(label="temperature Score", minimum=1, maximum=5, value=4, step=.1)
submit_btn = gr.Button("Analyze")
with gr.Column(visible=True,scale=1, min_width=600) as output_col:
label = gr.Label(label = "Predicted Label")
local_plot = gr.Plot(label = 'Shap:')
submit_btn.click(
main_func,
[destination,passanger,weather,time,expiration,gender,age,maritalStatus,education,occupation,income,Bar,CoffeeHouse,CarryAway,RestaurantLessThan20,Restaurant20To50],
[label,local_plot], api_name="Employee_Turnover"
)
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([[4,4,4,4,5,5,4,4,4,4,5,5,4,4,4,4], [5,4,5,4,4,4,5,4,5,4,4,4,5,4,5,4]],
[destination,passanger,weather,time,expiration,gender,age,maritalStatus,education,occupation,income,Bar,CoffeeHouse,CarryAway,RestaurantLessThan20,Restaurant20To50],
[label,local_plot], main_func, cache_examples=True)
demo.launch()