public-saas / app.py
LeonceNsh's picture
Update app.py
ffbf5eb verified
import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from PIL import Image
import io
import gradio as gr
from cachetools import cached, TTLCache
import cProfile
import pstats
# Global fontsize variable
FONT_SIZE = 32
# Company ticker mapping
COMPANY_TICKERS = {
'Google': 'GOOGL',
'Applovin Corp': 'APP',
'Microsoft': 'MSFT',
'CoStar Group': 'CSGP',
'Cisco Systems': 'CSCO',
'Twilio': 'TWLO',
'Meta': 'META',
'Workday': 'WDAY',
'Veracyte': 'VCYT',
'NVIDIA Corp': 'NVDA',
'SAP': 'SAP',
'Oracle': 'ORCL',
'Uber': 'UBER',
'ADP': 'ADP',
'RSP': 'RSP',
'Adobe':'ADBE',
'Cadence Design Systems': 'CDNS',
'Salesforce':'CRM',
'Constellation Software': 'CNSWF',
'Palo Alto': 'PANW',
'Autodesk': 'ADSK',
'Intuit': 'INTU',
'Confluent': 'CFLT',
'CrowdStrike': 'CRWD',
'UIPath':'PATH',
'Synopsys': 'SNPS',
'Palantir': 'PLTR',
'Mongodb': 'MDB',
'Reddit':'RDDT',
'Cloudflare': 'NET',
'DoorDash':'DASH',
'Datadog': 'DDOG',
'Duolingo': 'DUOL',
'HubSpot': 'HUBS',
'Trade Desk': 'TTD',
'Samsara': 'IOT',
'ServiceNow': 'NOW',
'ANSYS': 'ANSS',
'Zeta Global Holdings': 'ZETA',
'Veeva Systems' : 'VEEV',
'Box Inc': 'BOX',
'Airbnb': 'ABNB',
'AppFolio': 'APPF',
'Fortinet': 'FTNT',
'Snowflake': 'SNOW',
'Zscaler': 'ZS',
'Okta': 'OKTA',
'Docusign':'DOCU',
'Elastic NV': 'ESTC',
'NetApp': 'NTAP',
'Guidewire': 'GWRE',
'Monday.com': 'MNDY',
'Atlassian': 'TEAM',
'Shopify': 'SHOP',
'HashiCorp': 'HCP',
'Gitlab': 'GTLB',
'Procore': 'PCOR',
'Dynatrace': 'DT',
'Rubrik': 'RBRK',
'SentinelOne': 'S',
'Klaviyo': 'KVYO',
'Braze': 'BRZE',
'Q2': 'QTWO',
'Tenable': 'TENB',
'Workiva': 'WK',
'Smartsheet': 'SMAR',
'Toast': 'TOST',
'Aspen Technology': 'AZPN',
'Clearwater Analytics Holdings': 'CWAN',
'Blackbaud': 'BLKB',
'nCino': 'NCNO',
'Envestnet': 'ENV',
'Lightspeed Commerce': 'LSPD',
'Five9': 'FIVN',
'Blend Labs': 'BLND',
'CS Disco': 'LAW'
}
# Cache with 1-day TTL
cache = TTLCache(maxsize=100, ttl=86400)
@cached(cache)
def fetch_historical_data(ticker, start_date, end_date):
"""Fetch historical stock data and market cap from Yahoo Finance."""
try:
data = yf.download(ticker, start=start_date, end=end_date)
if data.empty:
raise ValueError(f"No data found for ticker {ticker}")
info = yf.Ticker(ticker).info
market_cap = info.get('marketCap', 'N/A')
if market_cap != 'N/A':
market_cap = market_cap / 1e9 # Convert to billions
return data, market_cap
except Exception as e:
print(f"Error fetching data for {ticker}: {e}")
return None, 'N/A'
def plot_to_image(plt, title, market_cap):
"""Convert plot to a PIL Image object."""
plt.title(title, fontsize=FONT_SIZE + 1, pad=40)
plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold')
plt.legend(fontsize=FONT_SIZE)
plt.xlabel('Date', fontsize=FONT_SIZE)
plt.ylabel('', fontsize=FONT_SIZE)
plt.grid(True)
plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE)
plt.yticks(fontsize=FONT_SIZE)
plt.tight_layout(rect=[0, 0, 1, 0.88])
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=200)
plt.close()
buf.seek(0)
return Image.open(buf)
def plot_indicator(data, company_name, ticker, indicator, market_cap):
"""Plot selected technical indicator for a single company."""
plt.figure(figsize=(16, 10))
if indicator == "SMA":
sma_55 = data['Close'].rolling(window=55).mean()
sma_200 = data['Close'].rolling(window=200).mean()
plt.plot(data.index, data['Close'], label='Close')
plt.plot(data.index, sma_55, label='55-day SMA')
plt.plot(data.index, sma_200, label='200-day SMA')
plt.ylabel('Price', fontsize=FONT_SIZE)
elif indicator == "MACD":
exp1 = data['Close'].ewm(span=12, adjust=False).mean()
exp2 = data['Close'].ewm(span=26, adjust=False).mean()
macd = exp1 - exp2
signal = macd.ewm(span=9, adjust=False).mean()
plt.plot(data.index, macd, label='MACD')
plt.plot(data.index, signal, label='Signal Line')
plt.bar(data.index, macd - signal, label='MACD Histogram')
plt.ylabel('MACD', fontsize=FONT_SIZE)
elif indicator == "RSI":
window_length = 14
delta = data['Close'].diff()
gain = delta.clip(lower=0)
loss = -delta.clip(upper=0)
avg_gain = gain.ewm(alpha=1/window_length, min_periods=window_length).mean()
avg_loss = loss.ewm(alpha=1/window_length, min_periods=window_length).mean()
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
plt.plot(data.index, rsi, label='RSI')
plt.axhline(70, color='red', linestyle='--', label='Overbought (70)')
plt.axhline(30, color='green', linestyle='--', label='Oversold (30)')
plt.ylabel('RSI', fontsize=FONT_SIZE)
elif indicator == "Bollinger Bands":
window = 20
no_of_std = 2
rolling_mean = data['Close'].rolling(window).mean()
rolling_std = data['Close'].rolling(window).std()
upper_band = rolling_mean + (rolling_std * no_of_std)
lower_band = rolling_mean - (rolling_std * no_of_std)
plt.plot(data.index, data['Close'], label='Close Price')
plt.plot(data.index, rolling_mean, label='20-day SMA', color='blue')
plt.plot(data.index, upper_band, label='Upper Bollinger Band', color='green')
plt.plot(data.index, lower_band, label='Lower Bollinger Band', color='red')
plt.fill_between(data.index, lower_band, upper_band, color='grey', alpha=0.1)
plt.ylabel('Price', fontsize=FONT_SIZE)
return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap)
def plot_indicators(company_names, indicator_types):
"""Plot the selected indicators for the selected companies."""
images = []
total_market_cap = 0
if len(company_names) > 7:
return None, "You can select up to 7 companies at the same time.", None
if len(company_names) > 1 and len(indicator_types) > 1:
return None, "You can only select one indicator when selecting multiple companies.", None
with ThreadPoolExecutor() as executor:
future_to_company = {
executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator)
for company in company_names
for indicator in indicator_types
}
for future in as_completed(future_to_company):
company, indicator = future_to_company[future]
ticker = COMPANY_TICKERS[company]
data, market_cap = future.result()
if data is None:
continue
images.append(plot_indicator(data, company, ticker, indicator, market_cap))
if market_cap != 'N/A':
total_market_cap += market_cap
return images, "", total_market_cap
def select_all_indicators(select_all):
"""Select or deselect all indicators based on the select_all flag."""
indicators = ["SMA", "MACD", "RSI", "Bollinger Bands"]
return indicators if select_all else []
def launch_gradio_app():
"""Launch the Gradio app for interactive plotting."""
company_choices = list(COMPANY_TICKERS.keys())
indicators = ["SMA", "MACD", "RSI", "Bollinger Bands"]
def fetch_and_plot(company_names, indicator_types):
images, error_message, total_market_cap = plot_indicators(company_names, indicator_types)
if error_message:
return [None] * len(indicator_types), error_message, None
return images, "", f"Total Market Cap: ${total_market_cap:.2f} Billion" if total_market_cap else "N/A"
with gr.Blocks() as demo:
company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies")
select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True)
indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators")
select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup)
run_button = gr.Button("Plot Indicators")
plot_gallery = gr.Gallery(label="Indicator Plots")
error_markdown = gr.Markdown()
market_cap_text = gr.Markdown()
run_button.click(fetch_and_plot, inputs=[company_checkboxgroup, indicator_types_checkboxgroup], outputs=[plot_gallery, error_markdown, market_cap_text])
demo.launch()
def profile_code():
"""Profile the main functions to find speed bottlenecks."""
profiler = cProfile.Profile()
profiler.enable()
launch_gradio_app()
profiler.disable()
stats = pstats.Stats(profiler).sort_stats('cumtime')
stats.print_stats(10)
if __name__ == "__main__":
profile_code()