Joshua Sundance Bailey
initial commit
81e48fa
raw
history blame
5.14 kB
import logging
import os
from datetime import datetime
from uuid import uuid4
import streamlit as st
from langchain_community.chat_message_histories import (
StreamlitChatMessageHistory,
)
from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI
from st_multimodal_chatinput import multimodal_chatinput
logging.basicConfig(level=logging.DEBUG)
def chat_input_to_human_message(chat_input: dict) -> HumanMessage:
text = chat_input.get("text", "")
images = chat_input.get("images", [])
human_message = HumanMessage(
content=[
{
"type": "text",
"text": text,
},
]
+ [
{
"type": "image_url",
"image_url": {
"url": image,
},
}
for image in images
],
)
return human_message
def render_human_contents(msg: HumanMessage) -> None:
for d in msg.content:
if d["type"] == "text":
st.write(d["text"])
elif d["type"] == "image_url":
st.image(d["image_url"]["url"], use_column_width=True)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a multimodal AI chatbot having a conversation with a human. "
"You can accept text and images as input, but you can only respond with text. "
"The current time is {date_time}.",
),
MessagesPlaceholder(variable_name="history"),
MessagesPlaceholder(variable_name="input"),
],
).partial(date_time=datetime.now().strftime("%B %d, %Y %H:%M:%S"))
llm = None
runnable = None
with_message_history = None
langsmith_api_key = None
langsmith_project_name = None
langsmith_client = None
chat_input_dict = None
chat_input_human_message = None
history = StreamlitChatMessageHistory(key="chat_messages")
if not st.session_state.get("session_id", None):
st.session_state.session_id = str(uuid4())
top = st.container()
bottom = st.container()
with st.sidebar:
openai_api_key = st.text_input("OpenAI API Key", type="password")
use_gpt4o = st.toggle(label="`gpt-4-turbo` ⇄ `gpt-4o`", value=True)
model_option = "gpt-4o" if use_gpt4o else "gpt-4-turbo"
if openai_api_key:
llm = ChatOpenAI(
model=model_option,
streaming=True,
verbose=True,
openai_api_key=openai_api_key,
)
runnable = prompt | llm
with_message_history = RunnableWithMessageHistory(
runnable,
lambda _: history,
input_messages_key="input",
history_messages_key="history",
)
langsmith_api_key = st.text_input("LangSmith API Key", type="password")
langsmith_project_name = st.text_input(
"LangSmith Project Name",
value="streamlit-gpt4o",
)
langsmith_endpoint = st.text_input(
"LangSmith Endpoint",
value="https://api.smith.langchain.com",
)
if langsmith_api_key and langsmith_project_name:
os.environ["LANGCHAIN_API_KEY"] = langsmith_api_key
os.environ["LANGCHAIN_PROJECT"] = langsmith_project_name
os.environ["LANGCHAIN_ENDPOINT"] = langsmith_endpoint
os.environ["LANGCHAIN_TRACING_V2"] = "true"
else:
for key in (
"LANGCHAIN_API_KEY",
"LANGCHAIN_PROJECT",
"LANGCHAIN_ENDPOINT",
"LANGCHAIN_TRACING_V2",
):
os.environ.pop(key, None)
st.markdown(
f"## Current session ID\n`{st.session_state.get('session_id', '<none>')}`",
)
if st.button("Clear message history"):
history.clear()
st.session_state.session_id = None
st.rerun()
if not with_message_history:
st.error("Please enter an OpenAI API key in the sidebar.")
else:
with bottom:
chat_input_dict = multimodal_chatinput(text_color="black")
if chat_input_dict:
chat_input_human_message = chat_input_to_human_message(chat_input_dict)
with top:
for msg in history.messages:
if msg.type.lower() in ("user", "human"):
with st.chat_message("human"):
render_human_contents(msg)
elif msg.type.lower() in ("ai", "assistant", "aimessagechunk"):
with st.chat_message("ai"):
st.write(msg.content)
if chat_input_human_message:
with st.chat_message("human"):
render_human_contents(chat_input_human_message)
with st.chat_message("ai"):
st.write_stream(
with_message_history.stream(
{"input": [chat_input_human_message]},
{
"configurable": {"session_id": st.session_state.session_id},
},
),
)
chat_input_human_message = None