| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| def respond( | |
| message: str, | |
| history: list[tuple[str, str]], | |
| system_message: str, | |
| max_tokens: int, | |
| temperature: float, | |
| top_p: float, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_message, assistant_message in history: | |
| if user_message: | |
| messages.append({"role": "user", "content": user_message}) | |
| if assistant_message: | |
| messages.append({"role": "assistant", "content": assistant_message}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |