|
|
|
|
|
from random import choice |
|
from string import ascii_uppercase |
|
from torch.utils.data import DataLoader |
|
from torchvision.transforms import transforms |
|
import os |
|
from pti.pti_configs import global_config, paths_config |
|
import wandb |
|
|
|
from pti.training.coaches.multi_id_coach import MultiIDCoach |
|
from pti.training.coaches.single_id_coach import SingleIDCoach |
|
from utils.ImagesDataset import ImagesDataset |
|
|
|
|
|
def run_PTI(run_name='', use_wandb=False, use_multi_id_training=False): |
|
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' |
|
os.environ['CUDA_VISIBLE_DEVICES'] = global_config.cuda_visible_devices |
|
|
|
if run_name == '': |
|
global_config.run_name = ''.join(choice(ascii_uppercase) for i in range(12)) |
|
else: |
|
global_config.run_name = run_name |
|
|
|
if use_wandb: |
|
run = wandb.init(project=paths_config.pti_results_keyword, reinit=True, name=global_config.run_name) |
|
global_config.pivotal_training_steps = 1 |
|
global_config.training_step = 1 |
|
|
|
embedding_dir_path = f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}/{paths_config.pti_results_keyword}' |
|
|
|
os.makedirs(embedding_dir_path, exist_ok=True) |
|
|
|
dataset = ImagesDataset(paths_config.input_data_path, transforms.Compose([ |
|
transforms.Resize((1024, 512)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])) |
|
|
|
dataloader = DataLoader(dataset, batch_size=1, shuffle=False) |
|
|
|
if use_multi_id_training: |
|
coach = MultiIDCoach(dataloader, use_wandb) |
|
else: |
|
coach = SingleIDCoach(dataloader, use_wandb) |
|
|
|
coach.train() |
|
|
|
return global_config.run_name |
|
|
|
|
|
if __name__ == '__main__': |
|
run_PTI(run_name='', use_wandb=False, use_multi_id_training=False) |
|
|