|
import torch |
|
import numpy as np |
|
import wandb |
|
from pti.pti_configs import hyperparameters, global_config |
|
l2_criterion = torch.nn.MSELoss(reduction='mean') |
|
|
|
|
|
def l2_loss(real_images, generated_images): |
|
loss = l2_criterion(real_images, generated_images) |
|
return loss |
|
|
|
|
|
class Space_Regulizer: |
|
def __init__(self, original_G, lpips_net): |
|
self.original_G = original_G |
|
self.morphing_regulizer_alpha = hyperparameters.regulizer_alpha |
|
self.lpips_loss = lpips_net |
|
|
|
def get_morphed_w_code(self, new_w_code, fixed_w): |
|
interpolation_direction = new_w_code - fixed_w |
|
interpolation_direction_norm = torch.norm(interpolation_direction, p=2) |
|
direction_to_move = hyperparameters.regulizer_alpha * interpolation_direction / interpolation_direction_norm |
|
result_w = fixed_w + direction_to_move |
|
self.morphing_regulizer_alpha * fixed_w + (1 - self.morphing_regulizer_alpha) * new_w_code |
|
|
|
return result_w |
|
|
|
def get_image_from_ws(self, w_codes, G): |
|
return torch.cat([G.synthesis(w_code, noise_mode='none', force_fp32=True) for w_code in w_codes]) |
|
|
|
def ball_holder_loss_lazy(self, new_G, num_of_sampled_latents, w_batch, use_wandb=False): |
|
loss = 0.0 |
|
|
|
z_samples = np.random.randn(num_of_sampled_latents, self.original_G.z_dim) |
|
w_samples = self.original_G.mapping(torch.from_numpy(z_samples).to(global_config.device), None, |
|
truncation_psi=0.5) |
|
territory_indicator_ws = [self.get_morphed_w_code(w_code.unsqueeze(0), w_batch) for w_code in w_samples] |
|
|
|
for w_code in territory_indicator_ws: |
|
new_img = new_G.synthesis(w_code, noise_mode='none', force_fp32=True) |
|
with torch.no_grad(): |
|
old_img = self.original_G.synthesis(w_code, noise_mode='none', force_fp32=True) |
|
|
|
if hyperparameters.regulizer_l2_lambda > 0: |
|
l2_loss_val = l2_loss.l2_loss(old_img, new_img) |
|
if use_wandb: |
|
wandb.log({f'space_regulizer_l2_loss_val': l2_loss_val.detach().cpu()}, |
|
step=global_config.training_step) |
|
loss += l2_loss_val * hyperparameters.regulizer_l2_lambda |
|
|
|
if hyperparameters.regulizer_lpips_lambda > 0: |
|
loss_lpips = self.lpips_loss(old_img, new_img) |
|
loss_lpips = torch.mean(torch.squeeze(loss_lpips)) |
|
if use_wandb: |
|
wandb.log({f'space_regulizer_lpips_loss_val': loss_lpips.detach().cpu()}, |
|
step=global_config.training_step) |
|
loss += loss_lpips * hyperparameters.regulizer_lpips_lambda |
|
|
|
return loss / len(territory_indicator_ws) |
|
|
|
def space_regulizer_loss(self, new_G, w_batch, use_wandb): |
|
ret_val = self.ball_holder_loss_lazy(new_G, hyperparameters.latent_ball_num_of_samples, w_batch, use_wandb) |
|
return ret_val |
|
|