|
|
|
|
|
import os |
|
import os.path as osp |
|
from argparse import ArgumentParser |
|
from functools import partial |
|
from pathlib import Path |
|
import time |
|
|
|
import psutil |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
|
|
import dnnlib |
|
from gradio_utils import (ImageMask, draw_mask_on_image, draw_points_on_image, |
|
get_latest_points_pair, get_valid_mask, |
|
on_change_single_global_state) |
|
from viz.renderer import Renderer, add_watermark_np |
|
|
|
|
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
model_dir = Path('./checkpoints') |
|
snapshot_download('DragGan/DragGan-Models', |
|
repo_type='model', local_dir=model_dir) |
|
|
|
parser = ArgumentParser() |
|
parser.add_argument('--share', action='store_true') |
|
parser.add_argument('--cache-dir', type=str, default='./checkpoints') |
|
args = parser.parse_args() |
|
|
|
cache_dir = args.cache_dir |
|
|
|
device = 'cuda' |
|
IS_SPACE = "DragGan/DragGan" in os.environ.get('SPACE_ID', '') |
|
TIMEOUT = 80 |
|
|
|
|
|
def reverse_point_pairs(points): |
|
new_points = [] |
|
for p in points: |
|
new_points.append([p[1], p[0]]) |
|
return new_points |
|
|
|
|
|
def clear_state(global_state, target=None): |
|
"""Clear target history state from global_state |
|
If target is not defined, points and mask will be both removed. |
|
1. set global_state['points'] as empty dict |
|
2. set global_state['mask'] as full-one mask. |
|
""" |
|
if target is None: |
|
target = ['point', 'mask'] |
|
if not isinstance(target, list): |
|
target = [target] |
|
if 'point' in target: |
|
global_state['points'] = dict() |
|
print('Clear Points State!') |
|
if 'mask' in target: |
|
image_raw = global_state["images"]["image_raw"] |
|
global_state['mask'] = np.ones((image_raw.size[1], image_raw.size[0]), |
|
dtype=np.uint8) |
|
print('Clear mask State!') |
|
|
|
return global_state |
|
|
|
|
|
def init_images(global_state): |
|
"""This function is called only ones with Gradio App is started. |
|
0. pre-process global_state, unpack value from global_state of need |
|
1. Re-init renderer |
|
2. run `renderer._render_drag_impl` with `is_drag=False` to generate |
|
new image |
|
3. Assign images to global state and re-generate mask |
|
""" |
|
|
|
if isinstance(global_state, gr.State): |
|
state = global_state.value |
|
else: |
|
state = global_state |
|
|
|
state['renderer'].init_network( |
|
state['generator_params'], |
|
valid_checkpoints_dict[state['pretrained_weight']], |
|
state['params']['seed'], |
|
None, |
|
state['params']['latent_space'] == 'w+', |
|
'const', |
|
state['params']['trunc_psi'], |
|
state['params']['trunc_cutoff'], |
|
None, |
|
state['params']['lr'] |
|
) |
|
|
|
state['renderer']._render_drag_impl(state['generator_params'], |
|
is_drag=False, |
|
to_pil=True) |
|
|
|
init_image = state['generator_params'].image |
|
state['images']['image_orig'] = init_image |
|
state['images']['image_raw'] = init_image |
|
state['images']['image_show'] = Image.fromarray( |
|
add_watermark_np(np.array(init_image))) |
|
state['mask'] = np.ones((init_image.size[1], init_image.size[0]), |
|
dtype=np.uint8) |
|
return global_state |
|
|
|
|
|
def update_image_draw(image, points, mask, show_mask, global_state=None): |
|
|
|
image_draw = draw_points_on_image(image, points) |
|
if show_mask and mask is not None and not (mask == 0).all() and not ( |
|
mask == 1).all(): |
|
image_draw = draw_mask_on_image(image_draw, mask) |
|
|
|
image_draw = Image.fromarray(add_watermark_np(np.array(image_draw))) |
|
if global_state is not None: |
|
global_state['images']['image_show'] = image_draw |
|
return image_draw |
|
|
|
|
|
def preprocess_mask_info(global_state, image): |
|
"""Function to handle mask information. |
|
1. last_mask is None: Do not need to change mask, return mask |
|
2. last_mask is not None: |
|
2.1 global_state is remove_mask: |
|
2.2 global_state is add_mask: |
|
""" |
|
if isinstance(image, dict): |
|
last_mask = get_valid_mask(image['mask']) |
|
else: |
|
last_mask = None |
|
mask = global_state['mask'] |
|
|
|
|
|
if (mask == 1).all(): |
|
mask = last_mask |
|
|
|
|
|
editing_mode = global_state['editing_state'] |
|
|
|
if last_mask is None: |
|
return global_state |
|
|
|
if editing_mode == 'remove_mask': |
|
updated_mask = np.clip(mask - last_mask, 0, 1) |
|
print(f'Last editing_state is {editing_mode}, do remove.') |
|
elif editing_mode == 'add_mask': |
|
updated_mask = np.clip(mask + last_mask, 0, 1) |
|
print(f'Last editing_state is {editing_mode}, do add.') |
|
else: |
|
updated_mask = mask |
|
print(f'Last editing_state is {editing_mode}, ' |
|
'do nothing to mask.') |
|
|
|
global_state['mask'] = updated_mask |
|
|
|
return global_state |
|
|
|
|
|
def print_memory_usage(): |
|
|
|
print(f"System memory usage: {psutil.virtual_memory().percent}%") |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
print(f"GPU memory usage: {torch.cuda.memory_allocated() / 1e9} GB") |
|
print( |
|
f"Max GPU memory usage: {torch.cuda.max_memory_allocated() / 1e9} GB") |
|
device_properties = torch.cuda.get_device_properties(device) |
|
available_memory = device_properties.total_memory - \ |
|
torch.cuda.max_memory_allocated() |
|
print(f"Available GPU memory: {available_memory / 1e9} GB") |
|
else: |
|
print("No GPU available") |
|
|
|
|
|
|
|
allowed_checkpoints = [] |
|
if IS_SPACE: |
|
allowed_checkpoints = ["stylegan_human_v2_512.pkl", |
|
"stylegan2_dogs_1024_pytorch.pkl"] |
|
|
|
valid_checkpoints_dict = { |
|
f.name.split('.')[0]: str(f) |
|
for f in Path(cache_dir).glob('*.pkl') |
|
if f.name in allowed_checkpoints or not IS_SPACE |
|
} |
|
print('Valid checkpoint file:') |
|
print(valid_checkpoints_dict) |
|
|
|
init_pkl = 'stylegan_human_v2_512' |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown(""" |
|
# DragGAN - Drag Your GAN |
|
## Interactive Point-based Manipulation on the Generative Image Manifold |
|
### Unofficial Gradio Demo |
|
|
|
**Due to high demand, only one model can be run at a time, or you can duplicate the space and run your own copy.** |
|
|
|
<a href="https://huggingface.co/spaces/radames/DragGan?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> |
|
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for no queue on your own hardware.</p> |
|
|
|
* Official Repo: [XingangPan](https://github.com/XingangPan/DragGAN) |
|
* Gradio Demo by: [LeoXing1996](https://github.com/LeoXing1996) © [OpenMMLab MMagic](https://github.com/open-mmlab/mmagic) |
|
""") |
|
|
|
|
|
global_state = gr.State({ |
|
"images": { |
|
|
|
|
|
|
|
}, |
|
"temporal_params": { |
|
|
|
}, |
|
'mask': |
|
None, |
|
'last_mask': None, |
|
'show_mask': True, |
|
"generator_params": dnnlib.EasyDict(), |
|
"params": { |
|
"seed": int(np.random.randint(0, 2**32 - 1)), |
|
"motion_lambda": 20, |
|
"r1_in_pixels": 3, |
|
"r2_in_pixels": 12, |
|
"magnitude_direction_in_pixels": 1.0, |
|
"latent_space": "w+", |
|
"trunc_psi": 0.7, |
|
"trunc_cutoff": None, |
|
"lr": 0.001, |
|
}, |
|
"device": device, |
|
"draw_interval": 1, |
|
"renderer": Renderer(disable_timing=True), |
|
"points": {}, |
|
"curr_point": None, |
|
"curr_type_point": "start", |
|
'editing_state': 'add_points', |
|
'pretrained_weight': init_pkl |
|
}) |
|
|
|
|
|
global_state = init_images(global_state) |
|
with gr.Row(): |
|
|
|
with gr.Row(): |
|
|
|
|
|
with gr.Column(scale=3): |
|
|
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1, min_width=10): |
|
gr.Markdown(value='Pickle', show_label=False) |
|
|
|
with gr.Column(scale=4, min_width=10): |
|
form_pretrained_dropdown = gr.Dropdown( |
|
choices=list(valid_checkpoints_dict.keys()), |
|
label="Pretrained Model", |
|
value=init_pkl, |
|
) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=10): |
|
gr.Markdown(value='Latent', show_label=False) |
|
|
|
with gr.Column(scale=4, min_width=10): |
|
form_seed_number = gr.Slider( |
|
mininium=0, |
|
maximum=2**32-1, |
|
step=1, |
|
value=global_state.value['params']['seed'], |
|
interactive=True, |
|
|
|
label="Seed", |
|
) |
|
form_lr_number = gr.Number( |
|
value=global_state.value["params"]["lr"], |
|
interactive=True, |
|
label="Step Size") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2, min_width=10): |
|
form_reset_image = gr.Button("Reset Image") |
|
with gr.Column(scale=3, min_width=10): |
|
form_latent_space = gr.Radio( |
|
['w', 'w+'], |
|
value=global_state.value['params'] |
|
['latent_space'], |
|
interactive=True, |
|
label='Latent space to optimize', |
|
show_label=False, |
|
) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=10): |
|
gr.Markdown(value='Drag', show_label=False) |
|
with gr.Column(scale=4, min_width=10): |
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=10): |
|
enable_add_points = gr.Button('Add Points') |
|
with gr.Column(scale=1, min_width=10): |
|
undo_points = gr.Button('Reset Points') |
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=10): |
|
form_start_btn = gr.Button("Start") |
|
with gr.Column(scale=1, min_width=10): |
|
form_stop_btn = gr.Button("Stop") |
|
|
|
form_steps_number = gr.Number(value=0, |
|
label="Steps", |
|
interactive=False) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=10): |
|
gr.Markdown(value='Mask', show_label=False) |
|
with gr.Column(scale=4, min_width=10): |
|
enable_add_mask = gr.Button('Edit Flexible Area') |
|
with gr.Row(): |
|
with gr.Column(scale=1, min_width=10): |
|
form_reset_mask_btn = gr.Button("Reset mask") |
|
with gr.Column(scale=1, min_width=10): |
|
show_mask = gr.Checkbox( |
|
label='Show Mask', |
|
value=global_state.value['show_mask'], |
|
show_label=False) |
|
|
|
with gr.Row(): |
|
form_lambda_number = gr.Number( |
|
value=global_state.value["params"] |
|
["motion_lambda"], |
|
interactive=True, |
|
label="Lambda", |
|
) |
|
|
|
form_draw_interval_number = gr.Number( |
|
value=global_state.value["draw_interval"], |
|
label="Draw Interval (steps)", |
|
interactive=True, |
|
visible=False) |
|
|
|
|
|
with gr.Column(scale=8): |
|
form_image = ImageMask( |
|
value=global_state.value['images']['image_show'], |
|
brush_radius=20).style( |
|
width=768, |
|
height=768) |
|
gr.Markdown(""" |
|
## Quick Start |
|
|
|
1. Select desired `Pretrained Model` and adjust `Seed` to generate an |
|
initial image. |
|
2. Click on image to add control points. |
|
3. Click `Start` and enjoy it! |
|
|
|
## Advance Usage |
|
|
|
1. Change `Step Size` to adjust learning rate in drag optimization. |
|
2. Select `w` or `w+` to change latent space to optimize: |
|
* Optimize on `w` space may cause greater influence to the image. |
|
* Optimize on `w+` space may work slower than `w`, but usually achieve |
|
better results. |
|
* Note that changing the latent space will reset the image, points and |
|
mask (this has the same effect as `Reset Image` button). |
|
3. Click `Edit Flexible Area` to create a mask and constrain the |
|
unmasked region to remain unchanged. |
|
|
|
|
|
""") |
|
gr.HTML(""" |
|
<style> |
|
.container { |
|
position: absolute; |
|
height: 50px; |
|
text-align: center; |
|
line-height: 50px; |
|
width: 100%; |
|
} |
|
</style> |
|
<div class="container"> |
|
Gradio demo supported by |
|
<img src="https://avatars.githubusercontent.com/u/10245193?s=200&v=4" height="20" width="20" style="display:inline;"> |
|
<a href="https://github.com/open-mmlab/mmagic">OpenMMLab MMagic</a> |
|
</div> |
|
""") |
|
|
|
|
|
def on_change_pretrained_dropdown(pretrained_value, global_state): |
|
"""Function to handle model change. |
|
1. Set pretrained value to global_state |
|
2. Re-init images and clear all states |
|
""" |
|
|
|
global_state['pretrained_weight'] = pretrained_value |
|
init_images(global_state) |
|
clear_state(global_state) |
|
|
|
return global_state, global_state["images"]['image_show'] |
|
|
|
form_pretrained_dropdown.change( |
|
on_change_pretrained_dropdown, |
|
inputs=[form_pretrained_dropdown, global_state], |
|
outputs=[global_state, form_image], |
|
queue=True, |
|
) |
|
|
|
def on_click_reset_image(global_state): |
|
"""Reset image to the original one and clear all states |
|
1. Re-init images |
|
2. Clear all states |
|
""" |
|
|
|
init_images(global_state) |
|
clear_state(global_state) |
|
|
|
return global_state, global_state['images']['image_show'] |
|
|
|
form_reset_image.click( |
|
on_click_reset_image, |
|
inputs=[global_state], |
|
outputs=[global_state, form_image], |
|
queue=False, |
|
) |
|
|
|
|
|
def on_change_update_image_seed(seed, global_state): |
|
"""Function to handle generation seed change. |
|
1. Set seed to global_state |
|
2. Re-init images and clear all states |
|
""" |
|
|
|
global_state["params"]["seed"] = int(seed) |
|
init_images(global_state) |
|
clear_state(global_state) |
|
|
|
return global_state, global_state['images']['image_show'] |
|
|
|
form_seed_number.change( |
|
on_change_update_image_seed, |
|
inputs=[form_seed_number, global_state], |
|
outputs=[global_state, form_image], |
|
) |
|
|
|
def on_click_latent_space(latent_space, global_state): |
|
"""Function to reset latent space to optimize. |
|
NOTE: this function we reset the image and all controls |
|
1. Set latent-space to global_state |
|
2. Re-init images and clear all state |
|
""" |
|
|
|
global_state['params']['latent_space'] = latent_space |
|
init_images(global_state) |
|
clear_state(global_state) |
|
|
|
return global_state, global_state['images']['image_show'] |
|
|
|
form_latent_space.change(on_click_latent_space, |
|
inputs=[form_latent_space, global_state], |
|
outputs=[global_state, form_image]) |
|
|
|
|
|
form_lambda_number.change( |
|
partial(on_change_single_global_state, ["params", "motion_lambda"]), |
|
inputs=[form_lambda_number, global_state], |
|
outputs=[global_state], |
|
) |
|
|
|
def on_change_lr(lr, global_state): |
|
if lr == 0: |
|
print('lr is 0, do nothing.') |
|
return global_state |
|
else: |
|
global_state["params"]["lr"] = lr |
|
renderer = global_state['renderer'] |
|
renderer.update_lr(lr) |
|
print('New optimizer: ') |
|
print(renderer.w_optim) |
|
return global_state |
|
|
|
form_lr_number.change( |
|
on_change_lr, |
|
inputs=[form_lr_number, global_state], |
|
outputs=[global_state], |
|
queue=False, |
|
) |
|
|
|
def on_click_start(global_state, image): |
|
p_in_pixels = [] |
|
t_in_pixels = [] |
|
valid_points = [] |
|
|
|
|
|
global_state = preprocess_mask_info(global_state, image) |
|
|
|
|
|
if len(global_state["points"]) == 0: |
|
|
|
image_raw = global_state['images']['image_raw'] |
|
update_image_draw( |
|
image_raw, |
|
global_state['points'], |
|
global_state['mask'], |
|
global_state['show_mask'], |
|
global_state, |
|
) |
|
|
|
yield ( |
|
global_state, |
|
0, |
|
global_state['images']['image_show'], |
|
|
|
gr.Button.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
|
|
gr.Radio.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
|
|
gr.Button.update(interactive=False), |
|
|
|
|
|
gr.Dropdown.update(interactive=True), |
|
gr.Number.update(interactive=True), |
|
gr.Number.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
gr.Checkbox.update(interactive=True), |
|
|
|
gr.Number.update(interactive=True), |
|
) |
|
else: |
|
|
|
|
|
for key_point, point in global_state["points"].items(): |
|
try: |
|
p_start = point.get("start_temp", point["start"]) |
|
p_end = point["target"] |
|
|
|
if p_start is None or p_end is None: |
|
continue |
|
|
|
except KeyError: |
|
continue |
|
|
|
p_in_pixels.append(p_start) |
|
t_in_pixels.append(p_end) |
|
valid_points.append(key_point) |
|
|
|
mask = torch.tensor(global_state['mask']).float() |
|
drag_mask = 1 - mask |
|
|
|
renderer: Renderer = global_state["renderer"] |
|
global_state['temporal_params']['stop'] = False |
|
global_state['editing_state'] = 'running' |
|
|
|
|
|
p_to_opt = reverse_point_pairs(p_in_pixels) |
|
t_to_opt = reverse_point_pairs(t_in_pixels) |
|
print('Running with:') |
|
print(f' Source: {p_in_pixels}') |
|
print(f' Target: {t_in_pixels}') |
|
step_idx = 0 |
|
last_time = time.time() |
|
while True: |
|
print_memory_usage() |
|
|
|
print(f'Running time: {time.time() - last_time}') |
|
if IS_SPACE and time.time() - last_time > TIMEOUT: |
|
print('Timeout break!') |
|
break |
|
if global_state["temporal_params"]["stop"] or global_state['generator_params']["stop"]: |
|
break |
|
|
|
|
|
renderer._render_drag_impl( |
|
global_state['generator_params'], |
|
p_to_opt, |
|
t_to_opt, |
|
drag_mask, |
|
global_state['params']['motion_lambda'], |
|
reg=0, |
|
feature_idx=5, |
|
r1=global_state['params']['r1_in_pixels'], |
|
r2=global_state['params']['r2_in_pixels'], |
|
|
|
|
|
trunc_psi=global_state['params']['trunc_psi'], |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_drag=True, |
|
to_pil=True) |
|
|
|
if step_idx % global_state['draw_interval'] == 0: |
|
print('Current Source:') |
|
for key_point, p_i, t_i in zip(valid_points, p_to_opt, |
|
t_to_opt): |
|
global_state["points"][key_point]["start_temp"] = [ |
|
p_i[1], |
|
p_i[0], |
|
] |
|
global_state["points"][key_point]["target"] = [ |
|
t_i[1], |
|
t_i[0], |
|
] |
|
start_temp = global_state["points"][key_point][ |
|
"start_temp"] |
|
print(f' {start_temp}') |
|
|
|
image_result = global_state['generator_params']['image'] |
|
image_draw = update_image_draw( |
|
image_result, |
|
global_state['points'], |
|
global_state['mask'], |
|
global_state['show_mask'], |
|
global_state, |
|
) |
|
global_state['images']['image_raw'] = image_result |
|
|
|
yield ( |
|
global_state, |
|
step_idx, |
|
global_state['images']['image_show'], |
|
|
|
gr.Button.update(interactive=False), |
|
gr.Button.update(interactive=False), |
|
gr.Button.update(interactive=False), |
|
gr.Button.update(interactive=False), |
|
gr.Button.update(interactive=False), |
|
|
|
gr.Radio.update(interactive=False), |
|
gr.Button.update(interactive=False), |
|
|
|
gr.Button.update(interactive=True), |
|
|
|
|
|
gr.Dropdown.update(interactive=False), |
|
gr.Number.update(interactive=False), |
|
gr.Number.update(interactive=False), |
|
gr.Button.update(interactive=False), |
|
gr.Button.update(interactive=False), |
|
gr.Checkbox.update(interactive=False), |
|
|
|
gr.Number.update(interactive=False), |
|
) |
|
|
|
|
|
step_idx += 1 |
|
|
|
image_result = global_state['generator_params']['image'] |
|
global_state['images']['image_raw'] = image_result |
|
image_draw = update_image_draw(image_result, |
|
global_state['points'], |
|
global_state['mask'], |
|
global_state['show_mask'], |
|
global_state) |
|
|
|
|
|
|
|
|
|
global_state['editing_state'] = 'add_points' |
|
|
|
yield ( |
|
global_state, |
|
0, |
|
global_state['images']['image_show'], |
|
|
|
gr.Button.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
|
|
gr.Radio.update(interactive=True), |
|
gr.Button.update(interactive=True), |
|
|
|
gr.Button.update(interactive=False), |
|
|
|
|
|
gr.Dropdown.update(interactive=True), |
|
gr.Number.update(interactive=True), |
|
gr.Number.update(interactive=True), |
|
gr.Checkbox.update(interactive=True), |
|
gr.Number.update(interactive=True), |
|
) |
|
|
|
form_start_btn.click( |
|
on_click_start, |
|
inputs=[global_state, form_image], |
|
outputs=[ |
|
global_state, |
|
form_steps_number, |
|
form_image, |
|
|
|
|
|
form_reset_image, |
|
enable_add_points, |
|
enable_add_mask, |
|
undo_points, |
|
form_reset_mask_btn, |
|
form_latent_space, |
|
form_start_btn, |
|
form_stop_btn, |
|
|
|
|
|
form_pretrained_dropdown, |
|
form_seed_number, |
|
form_lr_number, |
|
show_mask, |
|
form_lambda_number, |
|
], |
|
) |
|
|
|
def on_click_stop(global_state): |
|
"""Function to handle stop button is clicked. |
|
1. send a stop signal by set global_state["temporal_params"]["stop"] as True |
|
2. Disable Stop button |
|
""" |
|
global_state["temporal_params"]["stop"] = True |
|
|
|
return global_state, gr.Button.update(interactive=False) |
|
|
|
form_stop_btn.click(on_click_stop, |
|
inputs=[global_state], |
|
outputs=[global_state, form_stop_btn], |
|
queue=False) |
|
|
|
form_draw_interval_number.change( |
|
partial( |
|
on_change_single_global_state, |
|
"draw_interval", |
|
map_transform=lambda x: int(x), |
|
), |
|
inputs=[form_draw_interval_number, global_state], |
|
outputs=[global_state], |
|
queue=False, |
|
) |
|
|
|
def on_click_remove_point(global_state): |
|
choice = global_state["curr_point"] |
|
del global_state["points"][choice] |
|
|
|
choices = list(global_state["points"].keys()) |
|
|
|
if len(choices) > 0: |
|
global_state["curr_point"] = choices[0] |
|
|
|
return ( |
|
gr.Dropdown.update(choices=choices, value=choices[0]), |
|
global_state, |
|
) |
|
|
|
|
|
def on_click_reset_mask(global_state): |
|
global_state['mask'] = np.ones( |
|
( |
|
global_state["images"]["image_raw"].size[1], |
|
global_state["images"]["image_raw"].size[0], |
|
), |
|
dtype=np.uint8, |
|
) |
|
image_draw = update_image_draw(global_state['images']['image_raw'], |
|
global_state['points'], |
|
global_state['mask'], |
|
global_state['show_mask'], global_state) |
|
return global_state, image_draw |
|
|
|
form_reset_mask_btn.click( |
|
on_click_reset_mask, |
|
inputs=[global_state], |
|
outputs=[global_state, form_image], |
|
) |
|
|
|
|
|
def on_click_enable_draw(global_state, image): |
|
"""Function to start add mask mode. |
|
1. Preprocess mask info from last state |
|
2. Change editing state to add_mask |
|
3. Set curr image with points and mask |
|
""" |
|
global_state = preprocess_mask_info(global_state, image) |
|
global_state['editing_state'] = 'add_mask' |
|
image_raw = global_state['images']['image_raw'] |
|
image_draw = update_image_draw(image_raw, global_state['points'], |
|
global_state['mask'], True, |
|
global_state) |
|
return (global_state, |
|
gr.Image.update(value=image_draw, interactive=True)) |
|
|
|
def on_click_remove_draw(global_state, image): |
|
"""Function to start remove mask mode. |
|
1. Preprocess mask info from last state |
|
2. Change editing state to remove_mask |
|
3. Set curr image with points and mask |
|
""" |
|
global_state = preprocess_mask_info(global_state, image) |
|
global_state['edinting_state'] = 'remove_mask' |
|
image_raw = global_state['images']['image_raw'] |
|
image_draw = update_image_draw(image_raw, global_state['points'], |
|
global_state['mask'], True, |
|
global_state) |
|
return (global_state, |
|
gr.Image.update(value=image_draw, interactive=True)) |
|
|
|
enable_add_mask.click(on_click_enable_draw, |
|
inputs=[global_state, form_image], |
|
outputs=[ |
|
global_state, |
|
form_image, |
|
], |
|
queue=False) |
|
|
|
def on_click_add_point(global_state, image: dict): |
|
"""Function switch from add mask mode to add points mode. |
|
1. Updaste mask buffer if need |
|
2. Change global_state['editing_state'] to 'add_points' |
|
3. Set current image with mask |
|
""" |
|
|
|
global_state = preprocess_mask_info(global_state, image) |
|
global_state['editing_state'] = 'add_points' |
|
mask = global_state['mask'] |
|
image_raw = global_state['images']['image_raw'] |
|
image_draw = update_image_draw(image_raw, global_state['points'], mask, |
|
global_state['show_mask'], global_state) |
|
|
|
return (global_state, |
|
gr.Image.update(value=image_draw, interactive=False)) |
|
|
|
enable_add_points.click(on_click_add_point, |
|
inputs=[global_state, form_image], |
|
outputs=[global_state, form_image], |
|
queue=False) |
|
|
|
def on_click_image(global_state, evt: gr.SelectData): |
|
"""This function only support click for point selection |
|
""" |
|
xy = evt.index |
|
if global_state['editing_state'] != 'add_points': |
|
print(f'In {global_state["editing_state"]} state. ' |
|
'Do not add points.') |
|
|
|
return global_state, global_state['images']['image_show'] |
|
|
|
points = global_state["points"] |
|
|
|
point_idx = get_latest_points_pair(points) |
|
if point_idx is None: |
|
points[0] = {'start': xy, 'target': None} |
|
print(f'Click Image - Start - {xy}') |
|
elif points[point_idx].get('target', None) is None: |
|
points[point_idx]['target'] = xy |
|
print(f'Click Image - Target - {xy}') |
|
else: |
|
points[point_idx + 1] = {'start': xy, 'target': None} |
|
print(f'Click Image - Start - {xy}') |
|
|
|
image_raw = global_state['images']['image_raw'] |
|
image_draw = update_image_draw( |
|
image_raw, |
|
global_state['points'], |
|
global_state['mask'], |
|
global_state['show_mask'], |
|
global_state, |
|
) |
|
|
|
return global_state, image_draw |
|
|
|
form_image.select( |
|
on_click_image, |
|
inputs=[global_state], |
|
outputs=[global_state, form_image], |
|
queue=False, |
|
) |
|
|
|
def on_click_clear_points(global_state): |
|
"""Function to handle clear all control points |
|
1. clear global_state['points'] (clear_state) |
|
2. re-init network |
|
2. re-draw image |
|
""" |
|
clear_state(global_state, target='point') |
|
|
|
renderer: Renderer = global_state["renderer"] |
|
renderer.feat_refs = None |
|
|
|
image_raw = global_state['images']['image_raw'] |
|
image_draw = update_image_draw(image_raw, {}, global_state['mask'], |
|
global_state['show_mask'], global_state) |
|
return global_state, image_draw |
|
|
|
undo_points.click(on_click_clear_points, |
|
inputs=[global_state], |
|
outputs=[global_state, form_image], |
|
queue=False) |
|
|
|
def on_click_show_mask(global_state, show_mask): |
|
"""Function to control whether show mask on image.""" |
|
global_state['show_mask'] = show_mask |
|
|
|
image_raw = global_state['images']['image_raw'] |
|
image_draw = update_image_draw( |
|
image_raw, |
|
global_state['points'], |
|
global_state['mask'], |
|
global_state['show_mask'], |
|
global_state, |
|
) |
|
return global_state, image_draw |
|
|
|
show_mask.change( |
|
on_click_show_mask, |
|
inputs=[global_state, show_mask], |
|
outputs=[global_state, form_image], |
|
queue=False, |
|
) |
|
|
|
print("SHAReD: Start app", parser.parse_args()) |
|
gr.close_all() |
|
app.queue(concurrency_count=1, max_size=200, api_open=False) |
|
app.launch(share=args.share, show_api=False) |
|
|