Spaces:
Runtime error
Runtime error
from huggingface_hub import InferenceClient | |
import os | |
# huggingface token used to load closed off models | |
token = os.environ.get("HGFTOKEN") | |
# interference client created from mistral 7b instruction fine tuned model | |
# credit: copied 1:1 from Hugging Face, Inc/ Omar Sanseviero (see https://huggingface.co/spaces/osanseviero/mistral-super-fast/) | |
interference = InferenceClient( | |
"mistralai/Mistral-7B-Instruct-v0.1" | |
) | |
temperature = 0.7 | |
max_new_tokens = 100 | |
top_p = 0.95 | |
repetition_penalty = 1.1 | |
# chat function - basically the main function calling other functions and returning a response to showcase in chatbot ui | |
def chat (prompt,history,system_prompt): | |
# creating formatted prompt and calling for an answer from the model | |
formatted_prompt = format_prompt(prompt, history) | |
answer=respond(formatted_prompt,system_prompt) | |
# updating the chat history with the new answer | |
history.append((prompt, answer)) | |
# returning the chat history to be displayed in the chatbot ui | |
return "",history | |
# function to format prompt in a way that is understandable for the text generation model | |
# credit: copied 1:1 from Hugging Face, Inc/ Omar Sanseviero (see https://huggingface.co/spaces/osanseviero/mistral-super-fast/) | |
def format_prompt(message, history): | |
prompt = "<s>" | |
# labeling each message in the history as bot or user | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
# function to get the response | |
# credit: minimally changed from Hugging Face, Inc/ Omar Sanseviero (see https://huggingface.co/spaces/osanseviero/mistral-super-fast/) | |
def respond(formatted_prompt, system_prompt): | |
global temperature, max_new_tokens, top_p, repetition_penalty | |
# setting model temperature and | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
# creating model arguments/settings | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
# calling for model output and returning it | |
output = interference.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=True, return_full_text=False).generated_text | |
return output |