Spaces:
Runtime error
Runtime error
# interpret module that implements the interpretability method | |
# external imports | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from shap import models, maskers, plots, PartitionExplainer | |
import torch | |
# internal imports | |
from utils import formatting as fmt | |
from .markup import markup_text | |
# global variables | |
TEACHER_FORCING = None | |
TEXT_MASKER = None | |
# main explain function that returns a chat with explanations | |
def chat_explained(model, prompt): | |
model.set_config() | |
# create the shap explainer | |
shap_explainer = PartitionExplainer(model.MODEL, model.TOKENIZER) | |
# get the shap values for the prompt | |
shap_values = shap_explainer([prompt]) | |
# create the explanation graphic and plot | |
graphic = create_graphic(shap_values) | |
plot = create_plot( | |
values=shap_values.values[0], | |
output_names=shap_values.output_names, | |
input_names=shap_values.data[0], | |
) | |
marked_text = markup_text( | |
shap_values.data[0], shap_values.values[0], variant="shap" | |
) | |
# create the response text | |
response_text = fmt.format_output_text(shap_values.output_names) | |
return response_text, graphic, plot, marked_text | |
def wrap_shap(model): | |
global TEXT_MASKER, TEACHER_FORCING | |
# set the device to cuda if gpu is available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# updating the model settings again | |
model.set_config() | |
# (re)initialize the shap models and masker | |
text_generation = models.TextGeneration(model.MODEL, model.TOKENIZER) | |
TEACHER_FORCING = models.TeacherForcing( | |
text_generation, | |
model.TOKENIZER, | |
device=str(device), | |
similarity_model=model.MODEL, | |
similarity_tokenizer=model.TOKENIZER, | |
) | |
TEXT_MASKER = maskers.Text(model.TOKENIZER, " ", collapse_mask_token=True) | |
# graphic plotting function that creates a html graphic (as string) for the explanation | |
def create_graphic(shap_values): | |
# create the html graphic using shap text plot function | |
graphic_html = plots.text(shap_values, display=False) | |
# return the html graphic as string | |
return str(graphic_html) | |
# creating an attention heatmap plot using matplotlib/seaborn | |
# CREDIT: adopted from official Matplotlib documentation | |
## see https://matplotlib.org/stable/ | |
def create_plot(values, output_names, input_names): | |
# Set seaborn style to dark | |
sns.set(style="white") | |
fig, ax = plt.subplots() | |
# Setting figure size | |
fig.set_size_inches( | |
max(values.shape[1] * 2, 10), | |
max(values.shape[0] * 1, 5), | |
) | |
# Plotting the heatmap with Seaborn's color palette | |
im = ax.imshow( | |
values, | |
vmax=values.max(), | |
vmin=values.min(), | |
cmap=sns.color_palette("vlag_r", as_cmap=True), | |
aspect="auto", | |
) | |
# Creating colorbar | |
cbar = ax.figure.colorbar(im, ax=ax) | |
cbar.ax.set_ylabel("Token Attribution", rotation=-90, va="bottom") | |
cbar.ax.yaxis.set_tick_params(color="black") | |
plt.setp(plt.getp(cbar.ax.axes, "yticklabels"), color="black") | |
# Setting ticks and labels with white color for visibility | |
ax.set_yticks(np.arange(len(input_names)), labels=input_names) | |
ax.set_xticks(np.arange(len(output_names)), labels=output_names) | |
plt.setp(ax.get_xticklabels(), color="black", rotation=45, ha="right") | |
plt.setp(ax.get_yticklabels(), color="black") | |
# Adjusting tick labels | |
ax.tick_params( | |
top=True, bottom=False, labeltop=False, labelbottom=True, color="white" | |
) | |
# Adding text annotations with appropriate contrast | |
for i in range(values.shape[0]): | |
for j in range(values.shape[1]): | |
val = values[i, j] | |
color = "white" if im.norm(values.max()) / 2 > im.norm(val) else "black" | |
ax.text(j, i, f"{val:.4f}", ha="center", va="center", color=color) | |
return plt | |