Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,50 @@
|
|
1 |
-
from shiny import App, ui, render
|
2 |
-
|
3 |
-
import
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
-
from PIL import Image
|
7 |
from transformers import SamModel, SamProcessor
|
8 |
|
9 |
-
# Load the processor and
|
10 |
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
11 |
-
model_path = "mito_model_checkpoint.pth"
|
12 |
model = SamModel.from_pretrained("facebook/sam-vit-base")
|
|
|
13 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
model.to(device)
|
16 |
model.eval()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def process_image(image_path):
|
19 |
-
|
20 |
-
image =
|
21 |
image_np = np.array(image)
|
22 |
-
|
23 |
-
# Prepare the image for the model using the processor
|
24 |
inputs = processor(images=image_np, return_tensors="pt")
|
25 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
26 |
-
|
27 |
-
# Perform inference
|
28 |
with torch.no_grad():
|
29 |
outputs = model(**inputs, multimask_output=False)
|
30 |
|
31 |
-
# Process the prediction to create a binary mask
|
32 |
pred_masks = torch.sigmoid(outputs.pred_masks).cpu().numpy()
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
return output_path
|
42 |
|
43 |
-
# Define the Shiny app UI layout
|
44 |
app_ui = ui.page_fluid(
|
45 |
ui.layout_sidebar(
|
46 |
ui.panel_sidebar(
|
@@ -48,7 +52,7 @@ app_ui = ui.page_fluid(
|
|
48 |
),
|
49 |
ui.panel_main(
|
50 |
ui.output_image("uploaded_image", "Uploaded Image"),
|
51 |
-
ui.
|
52 |
)
|
53 |
)
|
54 |
)
|
@@ -59,30 +63,24 @@ def server(input, output, session):
|
|
59 |
def uploaded_image():
|
60 |
file_info = input.image_upload()
|
61 |
if file_info:
|
62 |
-
if isinstance(file_info, list)
|
63 |
-
|
64 |
-
if file_path:
|
65 |
-
return {'src': file_path}
|
66 |
-
else:
|
67 |
-
file_path = file_info.get('datapath')
|
68 |
-
if file_path:
|
69 |
-
return {'src': file_path}
|
70 |
-
return None
|
71 |
|
72 |
@output
|
73 |
-
@render.
|
74 |
def segmented_image():
|
75 |
file_info = input.image_upload()
|
76 |
if file_info:
|
77 |
try:
|
78 |
-
file_path = file_info[0]
|
79 |
if file_path:
|
80 |
-
|
81 |
-
|
|
|
82 |
except Exception as e:
|
83 |
print(f"Error processing image: {e}")
|
84 |
-
return
|
85 |
|
86 |
# Create and run the Shiny app
|
87 |
app = App(app_ui, server)
|
88 |
-
app.run(
|
|
|
1 |
+
from shiny import App, ui, render
|
2 |
+
import base64
|
3 |
+
from io import BytesIO
|
4 |
+
from PIL import Image, ImageOps
|
5 |
import numpy as np
|
6 |
import torch
|
|
|
7 |
from transformers import SamModel, SamProcessor
|
8 |
|
9 |
+
# Load the processor and model
|
10 |
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
|
|
11 |
model = SamModel.from_pretrained("facebook/sam-vit-base")
|
12 |
+
model_path = "SAM/mito_model_checkpoint.pth"
|
13 |
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
model.to(device)
|
16 |
model.eval()
|
17 |
|
18 |
+
def preprocess_image(image, target_size=(256, 256)):
|
19 |
+
""" Resize the image to a standard dimension """
|
20 |
+
image = ImageOps.contain(image, target_size)
|
21 |
+
return image
|
22 |
+
|
23 |
+
def postprocess_mask(mask, threshold=0.95):
|
24 |
+
""" Apply threshold to clean up mask """
|
25 |
+
return (mask > threshold).astype(np.uint8) * 255
|
26 |
+
|
27 |
def process_image(image_path):
|
28 |
+
image = Image.open(image_path).convert("RGB")
|
29 |
+
image = preprocess_image(image) # Resize image before processing
|
30 |
image_np = np.array(image)
|
31 |
+
|
|
|
32 |
inputs = processor(images=image_np, return_tensors="pt")
|
33 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
34 |
+
|
|
|
35 |
with torch.no_grad():
|
36 |
outputs = model(**inputs, multimask_output=False)
|
37 |
|
|
|
38 |
pred_masks = torch.sigmoid(outputs.pred_masks).cpu().numpy()
|
39 |
+
# Ensure we only use the first mask and squeeze out any singleton dimensions
|
40 |
+
segmented_image = postprocess_mask(pred_masks.squeeze(), threshold=0.95) # Apply postprocessing
|
41 |
+
|
42 |
+
pil_img = Image.fromarray(segmented_image, mode="L")
|
43 |
+
buffered = BytesIO()
|
44 |
+
pil_img.save(buffered, format="PNG")
|
45 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
46 |
+
return f"data:image/png;base64,{img_str}"
|
|
|
47 |
|
|
|
48 |
app_ui = ui.page_fluid(
|
49 |
ui.layout_sidebar(
|
50 |
ui.panel_sidebar(
|
|
|
52 |
),
|
53 |
ui.panel_main(
|
54 |
ui.output_image("uploaded_image", "Uploaded Image"),
|
55 |
+
ui.output_ui("segmented_image", "Segmented Image") # Use output_ui for HTML content
|
56 |
)
|
57 |
)
|
58 |
)
|
|
|
63 |
def uploaded_image():
|
64 |
file_info = input.image_upload()
|
65 |
if file_info:
|
66 |
+
file_path = file_info[0]['datapath'] if isinstance(file_info, list) else file_info['datapath']
|
67 |
+
return {'src': file_path}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
@output
|
70 |
+
@render.ui # Use render.ui for direct HTML output
|
71 |
def segmented_image():
|
72 |
file_info = input.image_upload()
|
73 |
if file_info:
|
74 |
try:
|
75 |
+
file_path = file_info[0]['datapath'] if isinstance(file_info, list) else file_info['datapath']
|
76 |
if file_path:
|
77 |
+
base64_img = process_image(file_path)
|
78 |
+
# Return an HTML image tag with the base64 data URI
|
79 |
+
return ui.tags.img(src=base64_img, style="max-width: 100%; height: auto;")
|
80 |
except Exception as e:
|
81 |
print(f"Error processing image: {e}")
|
82 |
+
return "No image processed."
|
83 |
|
84 |
# Create and run the Shiny app
|
85 |
app = App(app_ui, server)
|
86 |
+
app.run()
|