Spaces:
Running
Running
update app.py
Browse files
app.py
CHANGED
|
@@ -18,15 +18,15 @@ REPO_ID = "Lefei/VisionTSpp"
|
|
| 18 |
LOCAL_DIR = "./hf_models/VisionTSpp"
|
| 19 |
CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt")
|
| 20 |
|
| 21 |
-
ARCH = 'mae_base'
|
| 22 |
|
| 23 |
-
#
|
| 24 |
if not os.path.exists(CKPT_PATH):
|
| 25 |
os.makedirs(LOCAL_DIR, exist_ok=True)
|
| 26 |
print("Downloading model from Hugging Face Hub...")
|
| 27 |
snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False)
|
| 28 |
|
| 29 |
-
#
|
| 30 |
model = VisionTSpp(
|
| 31 |
ARCH,
|
| 32 |
ckpt_path=CKPT_PATH,
|
|
@@ -37,15 +37,41 @@ model = VisionTSpp(
|
|
| 37 |
).to(DEVICE)
|
| 38 |
print(f"Model loaded on {DEVICE}")
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
# ========================
|
| 41 |
-
#
|
| 42 |
# ========================
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96):
|
| 45 |
"""
|
| 46 |
-
|
| 47 |
-
true: [T, nvars]
|
| 48 |
-
preds: [T, nvars],与 true 对齐
|
| 49 |
"""
|
| 50 |
if isinstance(true, torch.Tensor):
|
| 51 |
true = true.cpu().numpy()
|
|
@@ -53,7 +79,6 @@ def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96):
|
|
| 53 |
preds = preds.cpu().numpy()
|
| 54 |
|
| 55 |
nvars = true.shape[1]
|
| 56 |
-
|
| 57 |
FIG_WIDTH = 12
|
| 58 |
FIG_HEIGHT_PER_VAR = 1.8
|
| 59 |
FONT_S = 10
|
|
@@ -73,7 +98,6 @@ def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96):
|
|
| 73 |
ax.plot(np.arange(lookback_len, len(true)), preds[lookback_len:, i],
|
| 74 |
label='Prediction (Median)', color='blue', linewidth=1.8)
|
| 75 |
|
| 76 |
-
# 分隔线
|
| 77 |
y_min, y_max = ax.get_ylim()
|
| 78 |
ax.vlines(x=lookback_len, ymin=y_min, ymax=y_max,
|
| 79 |
colors='gray', linestyles='--', alpha=0.7, linewidth=1)
|
|
@@ -82,12 +106,10 @@ def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96):
|
|
| 82 |
ax.set_xticks([])
|
| 83 |
ax.text(0.005, 0.8, f'Var {i+1}', transform=ax.transAxes, fontsize=FONT_S, weight='bold')
|
| 84 |
|
| 85 |
-
# 图例
|
| 86 |
if preds is not None:
|
| 87 |
handles, labels = axes[0].get_legend_handles_labels()
|
| 88 |
fig.legend(handles, labels, loc='upper right', bbox_to_anchor=(0.9, 0.9), prop={'size': FONT_S})
|
| 89 |
|
| 90 |
-
# 计算 MSE/MAE
|
| 91 |
if preds is not None:
|
| 92 |
true_eval = true[-pred_len:]
|
| 93 |
pred_eval = preds[-pred_len:]
|
|
@@ -96,77 +118,81 @@ def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96):
|
|
| 96 |
fig.suptitle(f'MSE: {mse:.4f}, MAE: {mae:.4f}', fontsize=12, y=0.95)
|
| 97 |
|
| 98 |
plt.subplots_adjust(hspace=0)
|
| 99 |
-
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
"""
|
| 104 |
-
|
| 105 |
-
|
|
|
|
| 106 |
"""
|
| 107 |
if 'date' in df.columns:
|
| 108 |
-
df
|
| 109 |
-
df = df.set_index('date')
|
| 110 |
-
else:
|
| 111 |
-
# 如果没有 date 列,假设是纯数值序列
|
| 112 |
-
df = df.copy()
|
| 113 |
|
| 114 |
data = df.values # [T, nvars]
|
| 115 |
nvars = data.shape[1]
|
|
|
|
| 116 |
|
| 117 |
-
if
|
| 118 |
-
raise ValueError(f"
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
#
|
| 121 |
train_len = int(len(data) * 0.7)
|
| 122 |
x_mean = data[:train_len].mean(axis=0, keepdims=True)
|
| 123 |
x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8
|
| 124 |
data_norm = (data - x_mean) / x_std
|
| 125 |
|
| 126 |
-
#
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
y_true = data_norm[start_idx + context_len:end_idx] # [pred_len, nvars]
|
| 131 |
|
| 132 |
-
#
|
| 133 |
periodicity_list = freq_to_seasonality_list(freq)
|
| 134 |
periodicity = periodicity_list[0] if periodicity_list else 1
|
| 135 |
-
color_list = [i % 3 for i in range(nvars)]
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
model.update_config(
|
| 139 |
-
context_len=context_len,
|
| 140 |
-
pred_len=pred_len,
|
| 141 |
-
periodicity=periodicity,
|
| 142 |
-
num_patch_input=7,
|
| 143 |
-
padding_mode='constant'
|
| 144 |
-
)
|
| 145 |
|
| 146 |
-
# 转为 tensor
|
| 147 |
x_tensor = torch.FloatTensor(x).unsqueeze(0).to(DEVICE) # [1, T, N]
|
| 148 |
-
y_true_tensor = torch.FloatTensor(y_true).unsqueeze(0).to(DEVICE)
|
| 149 |
|
| 150 |
-
# 预测
|
| 151 |
with torch.no_grad():
|
| 152 |
-
y_pred,
|
|
|
|
|
|
|
| 153 |
y_pred_median = y_pred[0] # median prediction
|
| 154 |
|
| 155 |
# 反归一化
|
| 156 |
y_true_original = y_true * x_std + x_mean
|
| 157 |
y_pred_original = y_pred_median[0].cpu().numpy() * x_std + x_mean
|
| 158 |
|
| 159 |
-
#
|
| 160 |
full_true = np.concatenate([x * x_std + x_mean, y_true_original], axis=0)
|
| 161 |
full_pred = np.concatenate([x * x_std + x_mean, y_pred_original], axis=0)
|
| 162 |
|
| 163 |
-
# 可视化
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
|
| 168 |
# ========================
|
| 169 |
-
#
|
| 170 |
# ========================
|
| 171 |
def load_default_data():
|
| 172 |
data_path = "./datasets/ETTm1.csv"
|
|
@@ -181,63 +207,84 @@ def load_default_data():
|
|
| 181 |
|
| 182 |
|
| 183 |
# ========================
|
| 184 |
-
# Gradio
|
| 185 |
# ========================
|
| 186 |
-
def run_forecast(file_input, context_len, pred_len, freq):
|
| 187 |
if file_input is not None:
|
| 188 |
df = pd.read_csv(file_input.name)
|
| 189 |
-
|
| 190 |
else:
|
| 191 |
df = load_default_data()
|
| 192 |
-
|
| 193 |
|
| 194 |
try:
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
except Exception as e:
|
| 200 |
-
#
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
| 206 |
|
|
|
|
| 207 |
|
|
|
|
|
|
|
| 208 |
# Gradio UI
|
| 209 |
-
|
|
|
|
| 210 |
gr.Markdown("# 🕰️ VisionTS++ 时间序列预测平台")
|
| 211 |
-
gr.Markdown("
|
| 212 |
|
| 213 |
with gr.Row():
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
context_len = gr.Number(label="历史长度
|
| 217 |
-
pred_len = gr.Number(label="预测长度
|
| 218 |
-
freq = gr.Textbox(label="
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
btn.click(
|
| 225 |
fn=run_forecast,
|
| 226 |
-
inputs=[file_input, context_len, pred_len, freq],
|
| 227 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
)
|
| 229 |
|
| 230 |
-
#
|
| 231 |
gr.Examples(
|
| 232 |
examples=[
|
| 233 |
[None, 960, 394, "15Min"]
|
| 234 |
],
|
| 235 |
inputs=[file_input, context_len, pred_len, freq],
|
| 236 |
-
outputs=
|
| 237 |
-
fn=run_forecast,
|
| 238 |
-
label="
|
| 239 |
)
|
| 240 |
|
| 241 |
# 启动
|
| 242 |
-
|
| 243 |
-
demo.launch()
|
|
|
|
| 18 |
LOCAL_DIR = "./hf_models/VisionTSpp"
|
| 19 |
CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt")
|
| 20 |
|
| 21 |
+
ARCH = 'mae_base'
|
| 22 |
|
| 23 |
+
# 下载模型
|
| 24 |
if not os.path.exists(CKPT_PATH):
|
| 25 |
os.makedirs(LOCAL_DIR, exist_ok=True)
|
| 26 |
print("Downloading model from Hugging Face Hub...")
|
| 27 |
snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False)
|
| 28 |
|
| 29 |
+
# 加载模型
|
| 30 |
model = VisionTSpp(
|
| 31 |
ARCH,
|
| 32 |
ckpt_path=CKPT_PATH,
|
|
|
|
| 37 |
).to(DEVICE)
|
| 38 |
print(f"Model loaded on {DEVICE}")
|
| 39 |
|
| 40 |
+
# Image normalization constants
|
| 41 |
+
imagenet_mean = np.array([0.485, 0.456, 0.406])
|
| 42 |
+
imagenet_std = np.array([0.229, 0.224, 0.225])
|
| 43 |
+
|
| 44 |
+
|
| 45 |
# ========================
|
| 46 |
+
# 可视化函数
|
| 47 |
# ========================
|
| 48 |
|
| 49 |
+
def show_image_tensor(image, title='', cur_nvars=1, cur_color_list=None):
|
| 50 |
+
"""
|
| 51 |
+
image: [H, W, 3] tensor
|
| 52 |
+
返回 matplotlib figure
|
| 53 |
+
"""
|
| 54 |
+
cur_image = torch.zeros_like(image)
|
| 55 |
+
height_per_var = image.shape[0] // cur_nvars
|
| 56 |
+
|
| 57 |
+
for i in range(cur_nvars):
|
| 58 |
+
cur_color = cur_color_list[i]
|
| 59 |
+
cur_image[i*height_per_var:(i+1)*height_per_var, :, cur_color] = \
|
| 60 |
+
(image[i*height_per_var:(i+1)*height_per_var, :, cur_color] * imagenet_std[cur_color] + imagenet_mean[cur_color]) * 255
|
| 61 |
+
|
| 62 |
+
cur_image = torch.clamp(cur_image, 0, 255).cpu().int()
|
| 63 |
+
|
| 64 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
| 65 |
+
ax.imshow(cur_image.numpy())
|
| 66 |
+
ax.set_title(title, fontsize=14)
|
| 67 |
+
ax.axis('off')
|
| 68 |
+
plt.close(fig)
|
| 69 |
+
return fig
|
| 70 |
+
|
| 71 |
+
|
| 72 |
def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96):
|
| 73 |
"""
|
| 74 |
+
绘制时间序列预测图(多变量)
|
|
|
|
|
|
|
| 75 |
"""
|
| 76 |
if isinstance(true, torch.Tensor):
|
| 77 |
true = true.cpu().numpy()
|
|
|
|
| 79 |
preds = preds.cpu().numpy()
|
| 80 |
|
| 81 |
nvars = true.shape[1]
|
|
|
|
| 82 |
FIG_WIDTH = 12
|
| 83 |
FIG_HEIGHT_PER_VAR = 1.8
|
| 84 |
FONT_S = 10
|
|
|
|
| 98 |
ax.plot(np.arange(lookback_len, len(true)), preds[lookback_len:, i],
|
| 99 |
label='Prediction (Median)', color='blue', linewidth=1.8)
|
| 100 |
|
|
|
|
| 101 |
y_min, y_max = ax.get_ylim()
|
| 102 |
ax.vlines(x=lookback_len, ymin=y_min, ymax=y_max,
|
| 103 |
colors='gray', linestyles='--', alpha=0.7, linewidth=1)
|
|
|
|
| 106 |
ax.set_xticks([])
|
| 107 |
ax.text(0.005, 0.8, f'Var {i+1}', transform=ax.transAxes, fontsize=FONT_S, weight='bold')
|
| 108 |
|
|
|
|
| 109 |
if preds is not None:
|
| 110 |
handles, labels = axes[0].get_legend_handles_labels()
|
| 111 |
fig.legend(handles, labels, loc='upper right', bbox_to_anchor=(0.9, 0.9), prop={'size': FONT_S})
|
| 112 |
|
|
|
|
| 113 |
if preds is not None:
|
| 114 |
true_eval = true[-pred_len:]
|
| 115 |
pred_eval = preds[-pred_len:]
|
|
|
|
| 118 |
fig.suptitle(f'MSE: {mse:.4f}, MAE: {mae:.4f}', fontsize=12, y=0.95)
|
| 119 |
|
| 120 |
plt.subplots_adjust(hspace=0)
|
| 121 |
+
plt.close(fig)
|
| 122 |
+
return fig
|
| 123 |
|
| 124 |
|
| 125 |
+
# ========================
|
| 126 |
+
# 数据预处理与预测
|
| 127 |
+
# ========================
|
| 128 |
+
|
| 129 |
+
def predict_at_index(df, index, context_len=960, pred_len=394, freq="15Min"):
|
| 130 |
"""
|
| 131 |
+
在指定 index 处预测
|
| 132 |
+
index: 第 index 个样本(从 0 开始)
|
| 133 |
+
返回: (ts_fig, input_img_fig, recon_img_fig)
|
| 134 |
"""
|
| 135 |
if 'date' in df.columns:
|
| 136 |
+
df = df.set_index(pd.to_datetime(df['date'])).drop(columns=['date'])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
data = df.values # [T, nvars]
|
| 139 |
nvars = data.shape[1]
|
| 140 |
+
total_samples = len(data) - context_len - pred_len + 1
|
| 141 |
|
| 142 |
+
if total_samples <= 0:
|
| 143 |
+
raise ValueError(f"数据太短,无法构造任何样本(需要至少 {context_len + pred_len} 行)")
|
| 144 |
+
if index >= total_samples:
|
| 145 |
+
raise ValueError(f"索引越界,最大允许索引为 {total_samples - 1}")
|
| 146 |
|
| 147 |
+
# 归一化
|
| 148 |
train_len = int(len(data) * 0.7)
|
| 149 |
x_mean = data[:train_len].mean(axis=0, keepdims=True)
|
| 150 |
x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8
|
| 151 |
data_norm = (data - x_mean) / x_std
|
| 152 |
|
| 153 |
+
# 提取当前样本
|
| 154 |
+
start_idx = index
|
| 155 |
+
x = data_norm[start_idx:start_idx + context_len] # [context_len, nvars]
|
| 156 |
+
y_true = data_norm[start_idx + context_len:start_idx + context_len + pred_len] # [pred_len, nvars]
|
|
|
|
| 157 |
|
| 158 |
+
# 周期性
|
| 159 |
periodicity_list = freq_to_seasonality_list(freq)
|
| 160 |
periodicity = periodicity_list[0] if periodicity_list else 1
|
| 161 |
+
color_list = [i % 3 for i in range(nvars)]
|
| 162 |
+
|
| 163 |
+
model.update_config(context_len=context_len, pred_len=pred_len, periodicity=periodicity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
|
|
|
| 165 |
x_tensor = torch.FloatTensor(x).unsqueeze(0).to(DEVICE) # [1, T, N]
|
|
|
|
| 166 |
|
|
|
|
| 167 |
with torch.no_grad():
|
| 168 |
+
y_pred, input_image, reconstructed_image, nvars_out, color_list_out = model.forward(
|
| 169 |
+
x_tensor, export_image=True, color_list=color_list
|
| 170 |
+
)
|
| 171 |
y_pred_median = y_pred[0] # median prediction
|
| 172 |
|
| 173 |
# 反归一化
|
| 174 |
y_true_original = y_true * x_std + x_mean
|
| 175 |
y_pred_original = y_pred_median[0].cpu().numpy() * x_std + x_mean
|
| 176 |
|
| 177 |
+
# 完整序列(用于可视化)
|
| 178 |
full_true = np.concatenate([x * x_std + x_mean, y_true_original], axis=0)
|
| 179 |
full_pred = np.concatenate([x * x_std + x_mean, y_pred_original], axis=0)
|
| 180 |
|
| 181 |
+
# === 可视化 ===
|
| 182 |
+
ts_fig = visual_ts(true=full_true, preds=full_pred, lookback_len_visual=context_len, pred_len=pred_len)
|
| 183 |
+
|
| 184 |
+
input_img_fig = show_image_tensor(
|
| 185 |
+
input_image[0, 0], title=f'Input Image (Sample {index})', cur_nvars=nvars, cur_color_list=color_list
|
| 186 |
+
)
|
| 187 |
+
recon_img_fig = show_image_tensor(
|
| 188 |
+
reconstructed_image[0, 0], title=f'Reconstructed Image', cur_nvars=nvars, cur_color_list=color_list
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
return ts_fig, input_img_fig, recon_img_fig, total_samples
|
| 192 |
|
| 193 |
|
| 194 |
# ========================
|
| 195 |
+
# 默认数据
|
| 196 |
# ========================
|
| 197 |
def load_default_data():
|
| 198 |
data_path = "./datasets/ETTm1.csv"
|
|
|
|
| 207 |
|
| 208 |
|
| 209 |
# ========================
|
| 210 |
+
# Gradio 接口
|
| 211 |
# ========================
|
| 212 |
+
def run_forecast(file_input, sample_index, context_len, pred_len, freq):
|
| 213 |
if file_input is not None:
|
| 214 |
df = pd.read_csv(file_input.name)
|
| 215 |
+
title_prefix = "Uploaded Data"
|
| 216 |
else:
|
| 217 |
df = load_default_data()
|
| 218 |
+
title_prefix = "ETTm1 Dataset"
|
| 219 |
|
| 220 |
try:
|
| 221 |
+
ts_fig, input_img_fig, recon_img_fig, total_samples = predict_at_index(
|
| 222 |
+
df, int(sample_index), context_len=int(context_len), pred_len=int(pred_len), freq=freq
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
# 修改标题
|
| 226 |
+
ts_fig.suptitle(f"{title_prefix} - Sample {int(sample_index)}", fontsize=14, y=0.98)
|
| 227 |
+
|
| 228 |
+
return ts_fig, input_img_fig, recon_img_fig, gr.update(maximum=total_samples - 1, value=total_samples - 1)
|
| 229 |
except Exception as e:
|
| 230 |
+
# 错误图
|
| 231 |
+
def error_fig(msg):
|
| 232 |
+
fig, ax = plt.subplots()
|
| 233 |
+
ax.text(0.5, 0.5, msg, ha='center', va='center', wrap=True)
|
| 234 |
+
ax.axis('off')
|
| 235 |
+
plt.close(fig)
|
| 236 |
+
return fig
|
| 237 |
|
| 238 |
+
return error_fig("Error"), error_fig("Error"), error_fig("Error"), gr.Number()
|
| 239 |
|
| 240 |
+
|
| 241 |
+
# ========================
|
| 242 |
# Gradio UI
|
| 243 |
+
# ========================
|
| 244 |
+
with gr.Blocks(title="VisionTS++ 多变量预测") as demo:
|
| 245 |
gr.Markdown("# 🕰️ VisionTS++ 时间序列预测平台")
|
| 246 |
+
gr.Markdown("上传 CSV 或使用默认 ETTm1 数据。滑动选择不同样本进行预测,并查看原始图像表示。")
|
| 247 |
|
| 248 |
with gr.Row():
|
| 249 |
+
with gr.Column(scale=2):
|
| 250 |
+
file_input = gr.File(label="上传 CSV 文件", file_types=['.csv'])
|
| 251 |
+
context_len = gr.Number(label="历史长度", value=960)
|
| 252 |
+
pred_len = gr.Number(label="预测长度", value=394)
|
| 253 |
+
freq = gr.Textbox(label="频率 (如 15Min)", value="15Min")
|
| 254 |
+
sample_index = gr.Slider(label="样本索引", minimum=0, maximum=100, step=1, value=0)
|
| 255 |
+
|
| 256 |
+
with gr.Column(scale=3):
|
| 257 |
+
ts_plot = gr.Plot(label="时间序列预测")
|
| 258 |
+
with gr.Row():
|
| 259 |
+
input_img_plot = gr.Plot(label="Input Image")
|
| 260 |
+
recon_img_plot = gr.Plot(label="Reconstructed Image")
|
| 261 |
+
|
| 262 |
+
btn = gr.Button("🚀 更新预测")
|
| 263 |
+
|
| 264 |
+
# 点击按钮或滑动条变化时更新
|
| 265 |
btn.click(
|
| 266 |
fn=run_forecast,
|
| 267 |
+
inputs=[file_input, sample_index, context_len, pred_len, freq],
|
| 268 |
+
outputs=[ts_plot, input_img_plot, recon_img_plot, sample_index]
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# 滑动条变化时也触发(但只在点击后才允许滑动)
|
| 272 |
+
# 我们用 sample_index.change 依赖于前一次运行的结果
|
| 273 |
+
demo.load(
|
| 274 |
+
fn=lambda: gr.update(maximum=100, value=0),
|
| 275 |
+
outputs=sample_index
|
| 276 |
)
|
| 277 |
|
| 278 |
+
# 示例
|
| 279 |
gr.Examples(
|
| 280 |
examples=[
|
| 281 |
[None, 960, 394, "15Min"]
|
| 282 |
],
|
| 283 |
inputs=[file_input, context_len, pred_len, freq],
|
| 284 |
+
outputs=[ts_plot, input_img_plot, recon_img_plot, sample_index],
|
| 285 |
+
fn=lambda f, i, c, p, fr: run_forecast(f, 0, c, p, fr), # 默认 index=0
|
| 286 |
+
label="运行默认示例"
|
| 287 |
)
|
| 288 |
|
| 289 |
# 启动
|
| 290 |
+
demo.launch()
|
|
|