Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- api/index.py +95 -52
api/index.py
CHANGED
@@ -8,10 +8,16 @@ import requests
|
|
8 |
import replicate
|
9 |
from flask import Flask, request
|
10 |
import gradio as gr
|
|
|
|
|
11 |
from openai import OpenAI
|
12 |
|
|
|
13 |
from dotenv import load_dotenv, find_dotenv
|
14 |
|
|
|
|
|
|
|
15 |
# Locate the .env file
|
16 |
dotenv_path = find_dotenv()
|
17 |
|
@@ -33,79 +39,116 @@ def call_openai(pil_image):
|
|
33 |
# Encode the image to base64
|
34 |
image_data = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
"
|
|
|
|
|
47 |
},
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def image_classifier(moodboard, prompt):
|
58 |
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Call Stable Diffusion API with the response from OpenAI
|
66 |
input = {
|
67 |
"width": 768,
|
68 |
"height": 768,
|
69 |
-
"prompt": "high quality render of " + prompt + ", " + openai_response[
|
70 |
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
71 |
"refine": "expert_ensemble_refiner",
|
72 |
"apply_watermark": False,
|
73 |
"num_inference_steps": 25,
|
74 |
-
"num_outputs":
|
75 |
}
|
76 |
|
77 |
output = replicate.run(
|
78 |
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
79 |
input=input
|
80 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
response = requests.get(image_url)
|
92 |
-
print(response)
|
93 |
-
img2 = Image.open(io.BytesIO(response.content))
|
94 |
-
|
95 |
-
image_url = output[2]
|
96 |
-
print(image_url)
|
97 |
-
response = requests.get(image_url)
|
98 |
-
print(response)
|
99 |
-
img3 = Image.open(io.BytesIO(response.content))
|
100 |
-
|
101 |
-
return [img1, img2, img3] # Return the image object
|
102 |
|
103 |
|
104 |
-
# app = Flask(__name__)
|
105 |
-
# os.environ.get("REPLICATE_API_TOKEN")
|
106 |
|
107 |
-
# @app.route("/")
|
108 |
-
# def index():
|
109 |
|
110 |
-
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image"])
|
111 |
-
demo.launch(share=True)
|
|
|
8 |
import replicate
|
9 |
from flask import Flask, request
|
10 |
import gradio as gr
|
11 |
+
|
12 |
+
import openai
|
13 |
from openai import OpenAI
|
14 |
|
15 |
+
|
16 |
from dotenv import load_dotenv, find_dotenv
|
17 |
|
18 |
+
import json
|
19 |
+
|
20 |
+
|
21 |
# Locate the .env file
|
22 |
dotenv_path = find_dotenv()
|
23 |
|
|
|
39 |
# Encode the image to base64
|
40 |
image_data = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
41 |
|
42 |
+
try:
|
43 |
+
response = client.chat.completions.create(
|
44 |
+
model="gpt-4o",
|
45 |
+
messages=[
|
46 |
+
{
|
47 |
+
"role": "user",
|
48 |
+
"content": [
|
49 |
+
{"type": "text", "text": "You are a product designer. I've attached a moodboard here. In one sentence, what do all of these elements have in common? Answer from a design language perspective, if you were telling another designer to create something similar, including any repeating colors and materials and shapes and textures"},
|
50 |
+
{
|
51 |
+
"type": "image_url",
|
52 |
+
"image_url": {
|
53 |
+
"url": "data:image/jpeg;base64," + image_data,
|
54 |
+
},
|
55 |
},
|
56 |
+
],
|
57 |
+
}
|
58 |
+
],
|
59 |
+
max_tokens=300,
|
60 |
+
)
|
61 |
+
return response.choices[0].message.content
|
62 |
+
except openai.BadRequestError as e:
|
63 |
+
print(e)
|
64 |
+
print("e type")
|
65 |
+
print(type(e))
|
66 |
+
raise gr.Error(f"Please retry with a different moodboard file (below 20 MB in size and is of one the following formats: ['png', 'jpeg', 'gif', 'webp'])")
|
67 |
+
except Exception as e:
|
68 |
+
raise gr.Error("Unknown Error")
|
69 |
+
|
70 |
|
71 |
def image_classifier(moodboard, prompt):
|
72 |
|
73 |
+
if moodboard is not None:
|
74 |
+
pil_image = Image.fromarray(moodboard.astype('uint8'))
|
75 |
+
|
76 |
+
openai_response = call_openai(pil_image)
|
77 |
+
openai_response = openai_response.replace('moodboard', '')
|
78 |
+
openai_response = openai_response.replace('share', '')
|
79 |
+
openai_response = openai_response.replace('unified', '')
|
80 |
+
else:
|
81 |
+
raise gr.Error(f"Please upload a moodboard to control image generation style")
|
82 |
+
|
83 |
+
input = {
|
84 |
+
"prompt": "high quality render of " + prompt + ", " + openai_response[12:],
|
85 |
+
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
86 |
+
"output_format": "jpg"
|
87 |
+
}
|
88 |
+
|
89 |
+
try:
|
90 |
+
output = replicate.run(
|
91 |
+
"stability-ai/stable-diffusion-3",
|
92 |
+
input=input
|
93 |
+
)
|
94 |
+
except Exception as e:
|
95 |
+
raise gr.Error(f"Error: {e}")
|
96 |
+
|
97 |
+
try:
|
98 |
+
image_url = output[0]
|
99 |
+
response = requests.get(image_url)
|
100 |
+
img1 = Image.open(io.BytesIO(response.content))
|
101 |
+
except Exception as e:
|
102 |
+
raise gr.Error(f"Image download failed: {e}")
|
103 |
+
|
104 |
+
input["aspect_ratio"] = "3:2"
|
105 |
+
input["cfg"] = 6
|
106 |
|
107 |
+
try:
|
108 |
+
output = replicate.run(
|
109 |
+
"stability-ai/stable-diffusion-3",
|
110 |
+
input=input
|
111 |
+
)
|
112 |
+
image_url = output[0]
|
113 |
+
response = requests.get(image_url)
|
114 |
+
img2 = Image.open(io.BytesIO(response.content))
|
115 |
+
except Exception as e:
|
116 |
+
raise gr.Error(f"Second image download failed: {e}")
|
117 |
+
|
118 |
# Call Stable Diffusion API with the response from OpenAI
|
119 |
input = {
|
120 |
"width": 768,
|
121 |
"height": 768,
|
122 |
+
"prompt": "high quality render of " + prompt + ", " + openai_response[12:],
|
123 |
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
124 |
"refine": "expert_ensemble_refiner",
|
125 |
"apply_watermark": False,
|
126 |
"num_inference_steps": 25,
|
127 |
+
"num_outputs": 2
|
128 |
}
|
129 |
|
130 |
output = replicate.run(
|
131 |
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
132 |
input=input
|
133 |
)
|
134 |
+
|
135 |
+
images = [img1, img2]
|
136 |
+
|
137 |
+
for i in range(min(len(output), 2)):
|
138 |
+
image_url = output[i]
|
139 |
+
response = requests.get(image_url)
|
140 |
+
images.append(Image.open(io.BytesIO(response.content)))
|
141 |
|
142 |
+
# Add empty images if fewer than 3 were returned
|
143 |
+
while len(images) < 4:
|
144 |
+
images.append(Image.new('RGB', (768, 768), 'gray'))
|
145 |
+
|
146 |
+
images.reverse()
|
147 |
+
return images
|
148 |
+
|
149 |
+
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image", "image"])
|
150 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
|
|
|
|
|
153 |
|
|
|
|
|
154 |
|
|
|
|