Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- api/index.py +38 -20
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
api/index.py
CHANGED
@@ -72,7 +72,7 @@ def call_openai(pil_image):
|
|
72 |
# Could even do this 4 different times to get more diversity of renders
|
73 |
# Add "simple" to prompt before word
|
74 |
|
75 |
-
def image_classifier(moodboard, prompt):
|
76 |
|
77 |
if moodboard is not None:
|
78 |
pil_image = Image.fromarray(moodboard.astype('uint8'))
|
@@ -81,29 +81,43 @@ def image_classifier(moodboard, prompt):
|
|
81 |
|
82 |
else:
|
83 |
raise gr.Error(f"Please upload a moodboard to control image generation style")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
input = {
|
86 |
"prompt": "high quality render of a " + prompt + " which " + openai_response + ", minimalist and simple mockup on a white background",
|
87 |
"output_format": "jpg"
|
88 |
}
|
89 |
|
90 |
-
try:
|
91 |
-
output = replicate.run(
|
92 |
-
"stability-ai/stable-diffusion-3",
|
93 |
-
input=input
|
94 |
-
)
|
95 |
-
except Exception as e:
|
96 |
-
raise gr.Error(f"Error: {e}")
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
except Exception as e:
|
103 |
-
raise gr.Error(f"Image download failed: {e}")
|
104 |
-
|
105 |
-
input["aspect_ratio"] = "3:2"
|
106 |
-
input["cfg"] = 6
|
107 |
|
108 |
try:
|
109 |
output = replicate.run(
|
@@ -128,13 +142,17 @@ def image_classifier(moodboard, prompt):
|
|
128 |
"num_outputs": 2,
|
129 |
"guidance_scale": 8.5
|
130 |
}
|
|
|
|
|
|
|
|
|
131 |
|
132 |
output = replicate.run(
|
133 |
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
134 |
input=input
|
135 |
)
|
136 |
|
137 |
-
images = [
|
138 |
|
139 |
for i in range(min(len(output), 2)):
|
140 |
image_url = output[i]
|
@@ -142,13 +160,13 @@ def image_classifier(moodboard, prompt):
|
|
142 |
images.append(Image.open(io.BytesIO(response.content)))
|
143 |
|
144 |
# Add empty images if fewer than 3 were returned
|
145 |
-
while len(images) <
|
146 |
images.append(Image.new('RGB', (768, 768), 'gray'))
|
147 |
|
148 |
images.reverse()
|
149 |
return images
|
150 |
|
151 |
-
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image"
|
152 |
demo.launch(share=True)
|
153 |
|
154 |
|
|
|
72 |
# Could even do this 4 different times to get more diversity of renders
|
73 |
# Add "simple" to prompt before word
|
74 |
|
75 |
+
def image_classifier(moodboard, starter_image, image_strength, prompt):
|
76 |
|
77 |
if moodboard is not None:
|
78 |
pil_image = Image.fromarray(moodboard.astype('uint8'))
|
|
|
81 |
|
82 |
else:
|
83 |
raise gr.Error(f"Please upload a moodboard to control image generation style")
|
84 |
+
|
85 |
+
if starter_image is not None:
|
86 |
+
starter_image_pil = Image.fromarray(starter_image.astype('uint8'))
|
87 |
+
|
88 |
+
# Resize the starter image if either dimension is larger than 768 pixels
|
89 |
+
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768:
|
90 |
+
# Calculate the new size while maintaining the aspect ratio
|
91 |
+
if starter_image_pil.size[0] > starter_image_pil.size[1]:
|
92 |
+
# Width is larger than height
|
93 |
+
new_width = 768
|
94 |
+
new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1])
|
95 |
+
else:
|
96 |
+
# Height is larger than width
|
97 |
+
new_height = 768
|
98 |
+
new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0])
|
99 |
+
|
100 |
+
# Resize the image
|
101 |
+
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
|
102 |
+
|
103 |
+
# Save the starter image to a bytes buffer
|
104 |
+
buffered = io.BytesIO()
|
105 |
+
starter_image_pil.save(buffered, format="JPEG")
|
106 |
+
|
107 |
+
# Encode the starter image to base64
|
108 |
+
starter_image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
109 |
+
|
110 |
|
111 |
input = {
|
112 |
"prompt": "high quality render of a " + prompt + " which " + openai_response + ", minimalist and simple mockup on a white background",
|
113 |
"output_format": "jpg"
|
114 |
}
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
if starter_image is not None:
|
118 |
+
input["image"] = "data:image/jpeg;base64," + starter_image_base64
|
119 |
+
input["prompt_strength"] = 1-image_strength
|
120 |
+
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
try:
|
123 |
output = replicate.run(
|
|
|
142 |
"num_outputs": 2,
|
143 |
"guidance_scale": 8.5
|
144 |
}
|
145 |
+
|
146 |
+
if starter_image is not None:
|
147 |
+
input["image"] = "data:image/jpeg;base64," + starter_image_base64
|
148 |
+
input["prompt_strength"] = 1-image_strength
|
149 |
|
150 |
output = replicate.run(
|
151 |
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
152 |
input=input
|
153 |
)
|
154 |
|
155 |
+
images = [img2]
|
156 |
|
157 |
for i in range(min(len(output), 2)):
|
158 |
image_url = output[i]
|
|
|
160 |
images.append(Image.open(io.BytesIO(response.content)))
|
161 |
|
162 |
# Add empty images if fewer than 3 were returned
|
163 |
+
while len(images) < 3:
|
164 |
images.append(Image.new('RGB', (768, 768), 'gray'))
|
165 |
|
166 |
images.reverse()
|
167 |
return images
|
168 |
|
169 |
+
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2), "text"], outputs=["image", "image", "image"])
|
170 |
demo.launch(share=True)
|
171 |
|
172 |
|