Leeps commited on
Commit
57610cc
1 Parent(s): ada8e2c

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. api/index.py +32 -30
api/index.py CHANGED
@@ -25,6 +25,7 @@ client = OpenAI()
25
 
26
  def call_openai(pil_image):
27
  # Save the PIL image to a bytes buffer
 
28
  buffered = io.BytesIO()
29
  pil_image.save(buffered, format="JPEG")
30
 
@@ -62,7 +63,8 @@ def call_openai(pil_image):
62
  raise gr.Error("Unknown Error")
63
 
64
  def image_classifier(moodboard, starter_image, image_strength, prompt):
65
-
 
66
  if moodboard is not None and starter_image is not None:
67
 
68
  # Convert the numpy array to a PIL image
@@ -84,10 +86,10 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
84
  # Resize the image
85
  starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
86
 
87
- openai_response = call_openai(pil_image)
88
- openai_response = openai_response.replace('moodboard', '')
89
- openai_response = openai_response.replace('share', '')
90
- openai_response = openai_response.replace('unified', '')
91
 
92
  # Save the starter image to a bytes buffer
93
  buffered = io.BytesIO()
@@ -99,35 +101,35 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
99
  raise gr.Error(f"Please upload a moodboard to control image generation style")
100
 
101
  # Call Stable Diffusion API with the response from OpenAI
102
- input = {
103
- "width": 768,
104
- "height": 768,
105
- "prompt": "high quality render of " + prompt + ", " + openai_response[12:],
106
- "negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
107
- "refine": "expert_ensemble_refiner",
108
- "image": "data:image/jpeg;base64," + starter_image_base64,
109
- "apply_watermark": False,
110
- "num_inference_steps": 25,
111
- "prompt_strength": 1-image_strength,
112
- "num_outputs": 3
113
- }
114
 
115
- output = replicate.run(
116
- "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
117
- input=input
118
- )
119
 
120
- images = []
121
- for i in range(min(len(output), 3)):
122
- image_url = output[i]
123
- response = requests.get(image_url)
124
- images.append(Image.open(io.BytesIO(response.content)))
125
 
126
- # Add empty images if fewer than 3 were returned
127
- while len(images) < 3:
128
- images.append(Image.new('RGB', (768, 768), 'gray'))
129
 
130
- return images
131
 
132
  header = "Set up APIs on HuggingFace or use free at https://app.idai.tools/"
133
  demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"], title=header)
 
25
 
26
  def call_openai(pil_image):
27
  # Save the PIL image to a bytes buffer
28
+
29
  buffered = io.BytesIO()
30
  pil_image.save(buffered, format="JPEG")
31
 
 
63
  raise gr.Error("Unknown Error")
64
 
65
  def image_classifier(moodboard, starter_image, image_strength, prompt):
66
+ raise gr.Error(header)
67
+
68
  if moodboard is not None and starter_image is not None:
69
 
70
  # Convert the numpy array to a PIL image
 
86
  # Resize the image
87
  starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
88
 
89
+ #openai_response = call_openai(pil_image)
90
+ #openai_response = openai_response.replace('moodboard', '')
91
+ #openai_response = openai_response.replace('share', '')
92
+ #openai_response = openai_response.replace('unified', '')
93
 
94
  # Save the starter image to a bytes buffer
95
  buffered = io.BytesIO()
 
101
  raise gr.Error(f"Please upload a moodboard to control image generation style")
102
 
103
  # Call Stable Diffusion API with the response from OpenAI
104
+ # input = {
105
+ # "width": 768,
106
+ # "height": 768,
107
+ # "prompt": "high quality render of " + prompt + ", " + openai_response[12:],
108
+ # "negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
109
+ # "refine": "expert_ensemble_refiner",
110
+ # "image": "data:image/jpeg;base64," + starter_image_base64,
111
+ # "apply_watermark": False,
112
+ # "num_inference_steps": 25,
113
+ # "prompt_strength": 1-image_strength,
114
+ # "num_outputs": 3
115
+ # }
116
 
117
+ # output = replicate.run(
118
+ # "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
119
+ # input=input
120
+ # )
121
 
122
+ # images = []
123
+ # for i in range(min(len(output), 3)):
124
+ # image_url = output[i]
125
+ # response = requests.get(image_url)
126
+ # images.append(Image.open(io.BytesIO(response.content)))
127
 
128
+ # # Add empty images if fewer than 3 were returned
129
+ # while len(images) < 3:
130
+ # images.append(Image.new('RGB', (768, 768), 'gray'))
131
 
132
+ # return images
133
 
134
  header = "Set up APIs on HuggingFace or use free at https://app.idai.tools/"
135
  demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"], title=header)