|
import json |
|
import re |
|
from pathlib import Path |
|
|
|
import yaml |
|
|
|
from modules import loaders, metadata_gguf, shared, ui |
|
|
|
|
|
def get_fallback_settings(): |
|
return { |
|
'wbits': 'None', |
|
'groupsize': 'None', |
|
'desc_act': False, |
|
'model_type': 'None', |
|
'max_seq_len': 2048, |
|
'n_ctx': 2048, |
|
'rope_freq_base': 0, |
|
'compress_pos_emb': 1, |
|
'truncation_length': shared.settings['truncation_length'], |
|
'skip_special_tokens': shared.settings['skip_special_tokens'], |
|
'custom_stopping_strings': shared.settings['custom_stopping_strings'], |
|
} |
|
|
|
|
|
def get_model_metadata(model): |
|
model_settings = {} |
|
|
|
|
|
settings = shared.model_config |
|
for pat in settings: |
|
if re.match(pat.lower(), model.lower()): |
|
for k in settings[pat]: |
|
model_settings[k] = settings[pat][k] |
|
|
|
if 'loader' not in model_settings: |
|
loader = infer_loader(model, model_settings) |
|
if 'wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0: |
|
loader = 'AutoGPTQ' |
|
|
|
model_settings['loader'] = loader |
|
|
|
|
|
if model_settings['loader'] in ['llama.cpp', 'llamacpp_HF', 'ctransformers']: |
|
path = Path(f'{shared.args.model_dir}/{model}') |
|
if path.is_file(): |
|
model_file = path |
|
else: |
|
model_file = list(path.glob('*.gguf'))[0] |
|
|
|
metadata = metadata_gguf.load_metadata(model_file) |
|
if 'llama.context_length' in metadata: |
|
model_settings['n_ctx'] = metadata['llama.context_length'] |
|
if 'llama.rope.scale_linear' in metadata: |
|
model_settings['compress_pos_emb'] = metadata['llama.rope.scale_linear'] |
|
if 'llama.rope.freq_base' in metadata: |
|
model_settings['rope_freq_base'] = metadata['llama.rope.freq_base'] |
|
|
|
else: |
|
|
|
path = Path(f'{shared.args.model_dir}/{model}/config.json') |
|
if path.exists(): |
|
metadata = json.loads(open(path, 'r').read()) |
|
if 'max_position_embeddings' in metadata: |
|
model_settings['truncation_length'] = metadata['max_position_embeddings'] |
|
model_settings['max_seq_len'] = metadata['max_position_embeddings'] |
|
|
|
if 'rope_theta' in metadata: |
|
model_settings['rope_freq_base'] = metadata['rope_theta'] |
|
|
|
if 'rope_scaling' in metadata and type(metadata['rope_scaling']) is dict and all(key in metadata['rope_scaling'] for key in ('type', 'factor')): |
|
if metadata['rope_scaling']['type'] == 'linear': |
|
model_settings['compress_pos_emb'] = metadata['rope_scaling']['factor'] |
|
|
|
if 'quantization_config' in metadata: |
|
if 'bits' in metadata['quantization_config']: |
|
model_settings['wbits'] = metadata['quantization_config']['bits'] |
|
if 'group_size' in metadata['quantization_config']: |
|
model_settings['groupsize'] = metadata['quantization_config']['group_size'] |
|
if 'desc_act' in metadata['quantization_config']: |
|
model_settings['desc_act'] = metadata['quantization_config']['desc_act'] |
|
|
|
|
|
path = Path(f'{shared.args.model_dir}/{model}/quantize_config.json') |
|
if path.exists(): |
|
metadata = json.loads(open(path, 'r').read()) |
|
if 'bits' in metadata: |
|
model_settings['wbits'] = metadata['bits'] |
|
if 'group_size' in metadata: |
|
model_settings['groupsize'] = metadata['group_size'] |
|
if 'desc_act' in metadata: |
|
model_settings['desc_act'] = metadata['desc_act'] |
|
|
|
|
|
if 'rope_freq_base' in model_settings and model_settings['rope_freq_base'] == 10000: |
|
model_settings.pop('rope_freq_base') |
|
|
|
|
|
settings = shared.user_config |
|
for pat in settings: |
|
if re.match(pat.lower(), model.lower()): |
|
for k in settings[pat]: |
|
model_settings[k] = settings[pat][k] |
|
|
|
return model_settings |
|
|
|
|
|
def infer_loader(model_name, model_settings): |
|
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') |
|
if not path_to_model.exists(): |
|
loader = None |
|
elif (path_to_model / 'quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0): |
|
loader = 'ExLlama_HF' |
|
elif (path_to_model / 'quant_config.json').exists() or re.match(r'.*-awq', model_name.lower()): |
|
loader = 'AutoAWQ' |
|
elif len(list(path_to_model.glob('*.gguf'))) > 0: |
|
loader = 'llama.cpp' |
|
elif re.match(r'.*\.gguf', model_name.lower()): |
|
loader = 'llama.cpp' |
|
elif re.match(r'.*rwkv.*\.pth', model_name.lower()): |
|
loader = 'RWKV' |
|
elif re.match(r'.*exl2', model_name.lower()): |
|
loader = 'ExLlamav2_HF' |
|
else: |
|
loader = 'Transformers' |
|
|
|
return loader |
|
|
|
|
|
|
|
def update_model_parameters(state, initial=False): |
|
elements = ui.list_model_elements() |
|
gpu_memories = [] |
|
|
|
for i, element in enumerate(elements): |
|
if element not in state: |
|
continue |
|
|
|
value = state[element] |
|
if element.startswith('gpu_memory'): |
|
gpu_memories.append(value) |
|
continue |
|
|
|
if initial and element in shared.provided_arguments: |
|
continue |
|
|
|
|
|
if element in ['wbits', 'groupsize', 'model_type'] and value == 'None': |
|
value = vars(shared.args_defaults)[element] |
|
elif element in ['cpu_memory'] and value == 0: |
|
value = vars(shared.args_defaults)[element] |
|
|
|
|
|
if element in ['wbits', 'groupsize', 'pre_layer']: |
|
value = int(value) |
|
elif element == 'cpu_memory' and value is not None: |
|
value = f"{value}MiB" |
|
|
|
if element in ['pre_layer']: |
|
value = [value] if value > 0 else None |
|
|
|
setattr(shared.args, element, value) |
|
|
|
found_positive = False |
|
for i in gpu_memories: |
|
if i > 0: |
|
found_positive = True |
|
break |
|
|
|
if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']): |
|
if found_positive: |
|
shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories] |
|
else: |
|
shared.args.gpu_memory = None |
|
|
|
|
|
|
|
def apply_model_settings_to_state(model, state): |
|
model_settings = get_model_metadata(model) |
|
if 'loader' in model_settings: |
|
loader = model_settings.pop('loader') |
|
|
|
|
|
if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF', 'ExLlamav2', 'ExLlamav2_HF']) and not (loader == 'llama.cpp' and state['loader'] in ['llamacpp_HF', 'ctransformers']): |
|
state['loader'] = loader |
|
|
|
for k in model_settings: |
|
if k in state: |
|
if k in ['wbits', 'groupsize']: |
|
state[k] = str(model_settings[k]) |
|
else: |
|
state[k] = model_settings[k] |
|
|
|
return state |
|
|
|
|
|
|
|
def save_model_settings(model, state): |
|
if model == 'None': |
|
yield ("Not saving the settings because no model is loaded.") |
|
return |
|
|
|
with Path(f'{shared.args.model_dir}/config-user.yaml') as p: |
|
if p.exists(): |
|
user_config = yaml.safe_load(open(p, 'r').read()) |
|
else: |
|
user_config = {} |
|
|
|
model_regex = model + '$' |
|
if model_regex not in user_config: |
|
user_config[model_regex] = {} |
|
|
|
for k in ui.list_model_elements(): |
|
if k == 'loader' or k in loaders.loaders_and_params[state['loader']]: |
|
user_config[model_regex][k] = state[k] |
|
|
|
shared.user_config = user_config |
|
|
|
output = yaml.dump(user_config, sort_keys=False) |
|
with open(p, 'w') as f: |
|
f.write(output) |
|
|
|
yield (f"Settings for `{model}` saved to `{p}`.") |
|
|