|
import gc |
|
import os |
|
import re |
|
import time |
|
import traceback |
|
from pathlib import Path |
|
|
|
import torch |
|
import transformers |
|
from accelerate import infer_auto_device_map, init_empty_weights |
|
from accelerate.utils import is_ccl_available, is_xpu_available |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForSeq2SeqLM, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
GPTQConfig |
|
) |
|
|
|
import modules.shared as shared |
|
from modules import RoPE, llama_attn_hijack, sampler_hijack |
|
from modules.logging_colors import logger |
|
from modules.models_settings import get_model_metadata |
|
|
|
transformers.logging.set_verbosity_error() |
|
|
|
local_rank = None |
|
if shared.args.deepspeed: |
|
import deepspeed |
|
from transformers.deepspeed import ( |
|
HfDeepSpeedConfig, |
|
is_deepspeed_zero3_enabled |
|
) |
|
|
|
from modules.deepspeed_parameters import generate_ds_config |
|
|
|
|
|
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0")) |
|
world_size = int(os.getenv("WORLD_SIZE", "1")) |
|
if is_xpu_available() and is_ccl_available(): |
|
torch.xpu.set_device(local_rank) |
|
deepspeed.init_distributed(backend="ccl") |
|
else: |
|
torch.cuda.set_device(local_rank) |
|
deepspeed.init_distributed() |
|
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) |
|
dschf = HfDeepSpeedConfig(ds_config) |
|
|
|
sampler_hijack.hijack_samplers() |
|
|
|
|
|
def load_model(model_name, loader=None): |
|
logger.info(f"Loading {model_name}...") |
|
t0 = time.time() |
|
|
|
shared.is_seq2seq = False |
|
load_func_map = { |
|
'Transformers': huggingface_loader, |
|
'AutoGPTQ': AutoGPTQ_loader, |
|
'GPTQ-for-LLaMa': GPTQ_loader, |
|
'llama.cpp': llamacpp_loader, |
|
'llamacpp_HF': llamacpp_HF_loader, |
|
'RWKV': RWKV_loader, |
|
'ExLlama': ExLlama_loader, |
|
'ExLlama_HF': ExLlama_HF_loader, |
|
'ExLlamav2': ExLlamav2_loader, |
|
'ExLlamav2_HF': ExLlamav2_HF_loader, |
|
'ctransformers': ctransformers_loader, |
|
'AutoAWQ': AutoAWQ_loader, |
|
} |
|
|
|
metadata = get_model_metadata(model_name) |
|
if loader is None: |
|
if shared.args.loader is not None: |
|
loader = shared.args.loader |
|
else: |
|
loader = metadata['loader'] |
|
if loader is None: |
|
logger.error('The path to the model does not exist. Exiting.') |
|
raise ValueError |
|
|
|
shared.args.loader = loader |
|
output = load_func_map[loader](model_name) |
|
if type(output) is tuple: |
|
model, tokenizer = output |
|
else: |
|
model = output |
|
if model is None: |
|
return None, None |
|
else: |
|
tokenizer = load_tokenizer(model_name, model) |
|
|
|
|
|
if any((shared.args.xformers, shared.args.sdp_attention)): |
|
llama_attn_hijack.hijack_llama_attention() |
|
|
|
shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings}) |
|
logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.") |
|
return model, tokenizer |
|
|
|
|
|
def load_tokenizer(model_name, model): |
|
tokenizer = None |
|
path_to_model = Path(f"{shared.args.model_dir}/{model_name}/") |
|
if any(s in model_name.lower() for s in ['gpt-4chan', 'gpt4chan']) and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists(): |
|
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/")) |
|
elif path_to_model.exists(): |
|
if shared.args.use_fast: |
|
logger.info('Loading the tokenizer with use_fast=True.') |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
path_to_model, |
|
trust_remote_code=shared.args.trust_remote_code, |
|
use_fast=shared.args.use_fast |
|
) |
|
|
|
return tokenizer |
|
|
|
|
|
def huggingface_loader(model_name): |
|
|
|
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') |
|
params = { |
|
'low_cpu_mem_usage': True, |
|
'trust_remote_code': shared.args.trust_remote_code, |
|
'torch_dtype': torch.bfloat16 if shared.args.bf16 else torch.float16, |
|
'use_safetensors': True if shared.args.force_safetensors else None |
|
} |
|
|
|
if shared.args.use_flash_attention_2: |
|
params['use_flash_attention_2'] = True |
|
|
|
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=params['trust_remote_code']) |
|
|
|
if 'chatglm' in model_name.lower(): |
|
LoaderClass = AutoModel |
|
else: |
|
if config.to_dict().get('is_encoder_decoder', False): |
|
LoaderClass = AutoModelForSeq2SeqLM |
|
shared.is_seq2seq = True |
|
else: |
|
LoaderClass = AutoModelForCausalLM |
|
|
|
|
|
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.compress_pos_emb > 1, shared.args.alpha_value > 1, shared.args.disable_exllama]): |
|
model = LoaderClass.from_pretrained(path_to_model, **params) |
|
if torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
model = model.to(device) |
|
elif is_xpu_available(): |
|
device = torch.device("xpu") |
|
model = model.to(device) |
|
else: |
|
model = model.cuda() |
|
|
|
|
|
elif shared.args.deepspeed: |
|
model = LoaderClass.from_pretrained(path_to_model, torch_dtype=params['torch_dtype']) |
|
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0] |
|
model.module.eval() |
|
logger.info(f'DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}') |
|
|
|
|
|
else: |
|
|
|
if not any((shared.args.cpu, torch.cuda.is_available(), is_xpu_available(), torch.backends.mps.is_available())): |
|
logger.warning('torch.cuda.is_available() and is_xpu_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.') |
|
|
|
shared.args.cpu = True |
|
|
|
if shared.args.cpu: |
|
params['torch_dtype'] = torch.float32 |
|
else: |
|
params['device_map'] = 'auto' |
|
params['max_memory'] = get_max_memory_dict() |
|
if shared.args.load_in_4bit: |
|
|
|
|
|
quantization_config_params = { |
|
'load_in_4bit': True, |
|
'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None, |
|
'bnb_4bit_quant_type': shared.args.quant_type, |
|
'bnb_4bit_use_double_quant': shared.args.use_double_quant, |
|
} |
|
|
|
logger.info('Using the following 4-bit params: ' + str(quantization_config_params)) |
|
params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params) |
|
|
|
elif shared.args.load_in_8bit: |
|
if any((shared.args.auto_devices, shared.args.gpu_memory)): |
|
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True) |
|
else: |
|
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True) |
|
|
|
if params['max_memory'] is not None: |
|
with init_empty_weights(): |
|
model = LoaderClass.from_config(config, trust_remote_code=params['trust_remote_code']) |
|
|
|
model.tie_weights() |
|
params['device_map'] = infer_auto_device_map( |
|
model, |
|
dtype=torch.int8, |
|
max_memory=params['max_memory'], |
|
no_split_module_classes=model._no_split_modules |
|
) |
|
|
|
if shared.args.disk: |
|
params['offload_folder'] = shared.args.disk_cache_dir |
|
|
|
if shared.args.disable_exllama: |
|
try: |
|
gptq_config = GPTQConfig(bits=config.quantization_config.get('bits', 4), disable_exllama=True) |
|
params['quantization_config'] = gptq_config |
|
logger.info('Loading with ExLlama kernel disabled.') |
|
except: |
|
exc = traceback.format_exc() |
|
logger.error('Failed to disable exllama. Does the config.json for this model contain the necessary quantization info?') |
|
print(exc) |
|
|
|
if shared.args.compress_pos_emb > 1: |
|
params['rope_scaling'] = {'type': 'linear', 'factor': shared.args.compress_pos_emb} |
|
elif shared.args.alpha_value > 1: |
|
params['rope_scaling'] = {'type': 'dynamic', 'factor': RoPE.get_alpha_value(shared.args.alpha_value, shared.args.rope_freq_base)} |
|
|
|
model = LoaderClass.from_pretrained(path_to_model, **params) |
|
|
|
return model |
|
|
|
|
|
def llamacpp_loader(model_name): |
|
from modules.llamacpp_model import LlamaCppModel |
|
|
|
path = Path(f'{shared.args.model_dir}/{model_name}') |
|
if path.is_file(): |
|
model_file = path |
|
else: |
|
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf'))[0] |
|
|
|
logger.info(f"llama.cpp weights detected: {model_file}") |
|
model, tokenizer = LlamaCppModel.from_pretrained(model_file) |
|
return model, tokenizer |
|
|
|
|
|
def llamacpp_HF_loader(model_name): |
|
from modules.llamacpp_hf import LlamacppHF |
|
|
|
for fname in [model_name, "oobabooga_llama-tokenizer", "llama-tokenizer"]: |
|
path = Path(f'{shared.args.model_dir}/{fname}') |
|
if all((path / file).exists() for file in ['tokenizer_config.json', 'special_tokens_map.json', 'tokenizer.model']): |
|
logger.info(f'Using tokenizer from: {path}') |
|
break |
|
else: |
|
logger.error("Could not load the model because a tokenizer in transformers format was not found. Please download oobabooga/llama-tokenizer.") |
|
return None, None |
|
|
|
if shared.args.use_fast: |
|
logger.info('Loading the tokenizer with use_fast=True.') |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
path, |
|
trust_remote_code=shared.args.trust_remote_code, |
|
use_fast=shared.args.use_fast |
|
) |
|
|
|
model = LlamacppHF.from_pretrained(model_name) |
|
return model, tokenizer |
|
|
|
|
|
def ctransformers_loader(model_name): |
|
from modules.ctransformers_model import CtransformersModel |
|
|
|
path = Path(f'{shared.args.model_dir}/{model_name}') |
|
ctrans = CtransformersModel() |
|
if ctrans.model_type_is_auto(): |
|
model_file = path |
|
else: |
|
if path.is_file(): |
|
model_file = path |
|
else: |
|
entries = Path(f'{shared.args.model_dir}/{model_name}') |
|
gguf = list(entries.glob('*.gguf')) |
|
bin = list(entries.glob('*.bin')) |
|
if len(gguf) > 0: |
|
model_file = gguf[0] |
|
elif len(bin) > 0: |
|
model_file = bin[0] |
|
else: |
|
logger.error("Could not find a model for ctransformers.") |
|
return None, None |
|
|
|
logger.info(f'ctransformers weights detected: {model_file}') |
|
model, tokenizer = ctrans.from_pretrained(model_file) |
|
return model, tokenizer |
|
|
|
|
|
def AutoAWQ_loader(model_name): |
|
from awq import AutoAWQForCausalLM |
|
|
|
model_dir = Path(f'{shared.args.model_dir}/{model_name}') |
|
|
|
model = AutoAWQForCausalLM.from_quantized( |
|
quant_path=model_dir, |
|
max_new_tokens=shared.args.max_seq_len, |
|
trust_remote_code=shared.args.trust_remote_code, |
|
fuse_layers=not shared.args.no_inject_fused_attention, |
|
max_memory=get_max_memory_dict(), |
|
batch_size=1, |
|
safetensors=any(model_dir.glob('*.safetensors')), |
|
) |
|
|
|
return model |
|
|
|
|
|
def GPTQ_loader(model_name): |
|
|
|
|
|
if shared.args.monkey_patch: |
|
logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.") |
|
from modules.monkey_patch_gptq_lora import load_model_llama |
|
|
|
model, _ = load_model_llama(model_name) |
|
|
|
|
|
else: |
|
import modules.GPTQ_loader |
|
|
|
model = modules.GPTQ_loader.load_quantized(model_name) |
|
|
|
return model |
|
|
|
|
|
def AutoGPTQ_loader(model_name): |
|
import modules.AutoGPTQ_loader |
|
|
|
return modules.AutoGPTQ_loader.load_quantized(model_name) |
|
|
|
|
|
def ExLlama_loader(model_name): |
|
from modules.exllama import ExllamaModel |
|
|
|
model, tokenizer = ExllamaModel.from_pretrained(model_name) |
|
return model, tokenizer |
|
|
|
|
|
def ExLlama_HF_loader(model_name): |
|
from modules.exllama_hf import ExllamaHF |
|
|
|
return ExllamaHF.from_pretrained(model_name) |
|
|
|
|
|
def ExLlamav2_loader(model_name): |
|
from modules.exllamav2 import Exllamav2Model |
|
|
|
model, tokenizer = Exllamav2Model.from_pretrained(model_name) |
|
return model, tokenizer |
|
|
|
|
|
def ExLlamav2_HF_loader(model_name): |
|
from modules.exllamav2_hf import Exllamav2HF |
|
|
|
return Exllamav2HF.from_pretrained(model_name) |
|
|
|
|
|
def RWKV_loader(model_name): |
|
''' |
|
This loader is not currently maintained as RWKV can now be loaded |
|
through the transformers library. |
|
''' |
|
from modules.RWKV import RWKVModel, RWKVTokenizer |
|
|
|
model = RWKVModel.from_pretrained( |
|
Path(f'{shared.args.model_dir}/{model_name}'), |
|
dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", |
|
device="cpu" if shared.args.cpu else "xpu" if is_xpu_available() else "cuda" |
|
) |
|
|
|
tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir)) |
|
return model, tokenizer |
|
|
|
|
|
def get_max_memory_dict(): |
|
max_memory = {} |
|
if shared.args.gpu_memory: |
|
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) |
|
for i in range(len(memory_map)): |
|
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] |
|
|
|
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' |
|
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory |
|
|
|
|
|
|
|
elif shared.args.auto_devices: |
|
if is_xpu_available(): |
|
total_mem = (torch.xpu.get_device_properties(0).total_memory / (1024 * 1024)) |
|
else: |
|
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024)) |
|
suggestion = round((total_mem - 1000) / 1000) * 1000 |
|
if total_mem - suggestion < 800: |
|
suggestion -= 1000 |
|
|
|
suggestion = int(round(suggestion / 1000)) |
|
logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.") |
|
max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'} |
|
|
|
return max_memory if len(max_memory) > 0 else None |
|
|
|
|
|
def clear_torch_cache(): |
|
gc.collect() |
|
if not shared.args.cpu: |
|
if is_xpu_available(): |
|
torch.xpu.empty_cache() |
|
else: |
|
torch.cuda.empty_cache() |
|
|
|
|
|
def unload_model(): |
|
shared.model = shared.tokenizer = None |
|
shared.lora_names = [] |
|
shared.model_dirty_from_training = False |
|
clear_torch_cache() |
|
|
|
|
|
def reload_model(): |
|
unload_model() |
|
shared.model, shared.tokenizer = load_model(shared.model_name) |
|
|