Spaces:
Sleeping
Sleeping
# pip install streamlit langchain lanchain-openai beautifulsoup4 python-dotenv chromadb | |
import streamlit as st | |
from langchain_core.messages import AIMessage, HumanMessage | |
from langchain_community.document_loaders import WebBaseLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI | |
from dotenv import load_dotenv | |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain.chains import create_history_aware_retriever, create_retrieval_chain | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
load_dotenv() | |
def get_vectorstore_from_url(url): | |
# get the text in document form | |
loader = WebBaseLoader(url) | |
document = loader.load() | |
# split the document into chunks | |
text_splitter = RecursiveCharacterTextSplitter() | |
document_chunks = text_splitter.split_documents(document) | |
# create a vectorstore from the chunks | |
vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings()) | |
return vector_store | |
def get_context_retriever_chain(vector_store): | |
llm = ChatOpenAI() | |
retriever = vector_store.as_retriever() | |
prompt = ChatPromptTemplate.from_messages([ | |
MessagesPlaceholder(variable_name="chat_history"), | |
("user", "{input}"), | |
("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation") | |
]) | |
retriever_chain = create_history_aware_retriever(llm, retriever, prompt) | |
return retriever_chain | |
def get_conversational_rag_chain(retriever_chain): | |
llm = ChatOpenAI() | |
prompt = ChatPromptTemplate.from_messages([ | |
("system", "Answer the user's questions based on the below context:\n\n{context}"), | |
MessagesPlaceholder(variable_name="chat_history"), | |
("user", "{input}"), | |
]) | |
stuff_documents_chain = create_stuff_documents_chain(llm,prompt) | |
return create_retrieval_chain(retriever_chain, stuff_documents_chain) | |
def get_response(user_input): | |
retriever_chain = get_context_retriever_chain(st.session_state.vector_store) | |
conversation_rag_chain = get_conversational_rag_chain(retriever_chain) | |
response = conversation_rag_chain.invoke({ | |
"chat_history": st.session_state.chat_history, | |
"input": user_query | |
}) | |
return response['answer'] | |
# app config | |
st.set_page_config(page_title="Chat with websites", page_icon="🤖") | |
st.title("Chat with websites") | |
# sidebar | |
with st.sidebar: | |
st.header("Settings") | |
website_url = st.text_input("Website URL") | |
if website_url is None or website_url == "": | |
st.info("Please enter a website URL") | |
else: | |
# session state | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [ | |
AIMessage(content="Hello, I am a bot. How can I help you?"), | |
] | |
if "vector_store" not in st.session_state: | |
st.session_state.vector_store = get_vectorstore_from_url(website_url) | |
# user input | |
user_query = st.chat_input("Type your message here...") | |
if user_query is not None and user_query != "": | |
response = get_response(user_query) | |
st.session_state.chat_history.append(HumanMessage(content=user_query)) | |
st.session_state.chat_history.append(AIMessage(content=response)) | |
# conversation | |
for message in st.session_state.chat_history: | |
if isinstance(message, AIMessage): | |
with st.chat_message("AI"): | |
st.write(message.content) | |
elif isinstance(message, HumanMessage): | |
with st.chat_message("Human"): | |
st.write(message.content) | |