Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from PIL import Image | |
| import os | |
| # Diffusers | |
| from diffusers import ( | |
| FlaxControlNetModel, | |
| FlaxStableDiffusionControlNetPipeline | |
| ) | |
| from diffusers.utils import load_image | |
| # PyTorch | |
| import torch | |
| # Numpy | |
| import numpy as np | |
| # Jax | |
| import jax | |
| import jax.numpy as jnp | |
| from jax import pmap | |
| # Flax | |
| import flax | |
| from flax.jax_utils import replicate | |
| from flax.training.common_utils import shard | |
| os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"]="false" | |
| def create_key(seed=0): | |
| return jax.random.PRNGKey(seed) | |
| # load control net and stable diffusion v1-5 | |
| controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
| "learner/jax-diffuser-event", from_flax=True, dtype=jnp.float32 | |
| ) | |
| pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
| "runwayml/stable-diffusion-v1-5", | |
| controlnet=controlnet, | |
| from_pt=True, | |
| dtype=jnp.float32, | |
| #safety_checker=None, | |
| ) | |
| # inference function takes prompt, negative prompt and image | |
| def infer(prompts, negative_prompts, image): | |
| params["controlnet"] = controlnet_params | |
| num_samples = 1 # jax.device_count() | |
| rng = create_key(0) | |
| rng = jax.random.split(rng, jax.device_count()) | |
| battlemap_image = Image.fromarray(image) | |
| prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
| negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) | |
| processed_image = pipe.prepare_image_inputs([battlemap_image] * num_samples) #battlemap_image | |
| p_params = replicate(params) | |
| prompt_ids = shard(prompt_ids) | |
| negative_prompt_ids = shard(negative_prompt_ids) | |
| processed_image = shard(processed_image) | |
| output = pipe( | |
| prompt_ids=prompt_ids, | |
| image=processed_image, | |
| params=p_params, | |
| # params = params, | |
| prng_seed=rng, | |
| num_inference_steps=50, | |
| neg_prompt_ids=negative_prompt_ids, | |
| jit=True, | |
| ).images | |
| output_image = pipe.numpy_to_pil( | |
| np.asarray(output.reshape((num_samples,) + output.shape[-3:])) | |
| ) | |
| return output_image | |
| title = "ControlNet + Stable Diffusion for Battlemaps" | |
| description = """Sketch your game battlemap and add some prompts to let the magic happen 🪄. | |
| Pretrained on battlemaps images. | |
| By Orgrim, Karm and Robin | |
| """ | |
| # you need to pass inputs and outputs according to inference function | |
| gr.Interface( | |
| fn=infer, | |
| inputs=["text", "text", "image"], | |
| outputs="image", | |
| title=title, | |
| description=description, | |
| ).launch() | |