Spaces:
Sleeping
Sleeping
from utils import text_analysis_interface, token_classification_interface, text_interface | |
from transformers import pipeline | |
import os | |
auth_token = os.environ.get("TOKEN_FROM_SECRET") or True | |
models = { | |
"Text Analysis": { | |
"title": "Text Analysis", | |
"examples": [ | |
"Allianz adalah persuhaan asuransi yang di dirikan pada tanggal February 5, 1890 di Berlin, Jerman.", | |
"Restaurant ini sangat tidak enak. Enakan Pizza Hut.", | |
"Kacau lu ngerusakin rumah orang. Nih rumah yang punya Pak Presiden Jokowi.", | |
], | |
"output_label": [ | |
"Sentiment Analysis", | |
"Emotion Classifier", | |
"POS Tagging", | |
"NER Tagging", | |
], | |
"desc": "A tool to showcase the full capabilities of text analysis NusaBERT fine-tuning has to offer.", | |
"interface": text_analysis_interface, | |
"pipe": [ | |
pipeline(model="LazarusNLP/NusaBERT-base-EmoT", auth_token=auth_token), | |
pipeline(model="LazarusNLP/NusaBERT-base-EmoT", auth_token=auth_token), | |
pipeline(model="LazarusNLP/NusaBERT-base-POSP", auth_token=auth_token), | |
pipeline(model="LazarusNLP/NusaBERT-base-NERP", auth_token=auth_token), | |
], | |
}, | |
"Sentiment Analysis": { | |
"title": "Sentiment Analysis", | |
"examples": [ | |
"saya kecewa karena pengeditan biodata penumpang dilakukan by sistem tanpa konfirmasi dan solusi permasalahan nya pun dianggap sepele karena dibiarkan begitu saja sedang pelayanan pelanggan yang sudah berkali-berkali dihubungi pun hanya seperti mengulur waktu.", | |
"saya sudah transfer ratusan ribu dan sesuai nominal transfer. tapi tiket belum muncul juga. harus diwaspadai ini aplikasi ini.", | |
"keren sekali aplikasi ini bisa menunjukan data diri secara detail, sangat di rekomendasikan untuk di pakai.", | |
], | |
"output_label": "Sentiment Analysis", | |
"desc": "A sentiment-text-classification model based on the BERT model. The model was originally the pre-trained NusaBERT Base model, which is then fine-tuned on indonlu's SmSA dataset consisting of Indonesian comments and reviews.", | |
"interface": text_interface, | |
"pipe": pipeline(model="LazarusNLP/NusaBERT-base-EmoT", auth_token=auth_token), | |
}, | |
"Emotion Detection": { | |
"title": "Emotion Classifier", | |
"examples": [ | |
"iya semoga itu karya terbaik mu adalah skripsi mu dan lucua2n mu tapi harapan aku dari kamu adalah kesembuhanmu nold", | |
"saya ganteng, kalau tidak-suka mati saja kamu", | |
"Bahaha.. dia ke kasir after me. Sambil ngangkat keresek belanjaanku, masih sempet liat mas nya nyodorin barang belanjaannya", | |
], | |
"output_label": "Emotion Classifier", | |
"desc": "An emotion classifier based on the BERT model. The model was originally the pre-trained NusaBERT Base model, which is then fine-tuned on indonlu's EmoT dataset", | |
"interface": text_interface, | |
"pipe": pipeline(model="LazarusNLP/NusaBERT-base-EmoT", auth_token=auth_token), | |
}, | |
"POS Tagging": { | |
"title": "POS Tagging", | |
"examples": [ | |
"iya semoga itu karya terbaik mu adalah skripsi mu dan lucua2n mu tapi harapan aku dari kamu adalah kesembuhanmu nold", | |
"saya ganteng, kalau tidak-suka mati saja kamu", | |
"Bahaha.. dia ke kasir after me. Sambil ngangkat keresek belanjaanku, masih sempet liat mas nya nyodorin barang belanjaannya", | |
], | |
"output_label": "POS Tagging", | |
"desc": "A part-of-speech token-classification model based on the BERT model. The model was originally the pre-trained NusaBERT Base model, which is then fine-tuned on indonlu's POSP dataset consisting of tag-labelled news.", | |
"interface": token_classification_interface, | |
"pipe": pipeline(model="LazarusNLP/NusaBERT-base-POSP", auth_token=auth_token), | |
}, | |
"NER Tagging": { | |
"title": "NER Tagging", | |
"examples": [ | |
"Paris adalah ibukota dari negara Prancis.", | |
"Kuasa hukum teamster berasal dari Edmonton.", | |
"Jakarta, Indonesia akan menjadi bagian salah satu tempat yang akan didatangi.", | |
], | |
"output_label": "NER Tagging", | |
"desc": "A NER Tagging token-classification model based on the BERT model. The model was originally the pre-trained NusaBERT Base model, which is then fine-tuned on indonlu's NERP dataset consisting of tag-labelled news.", | |
"interface": token_classification_interface, | |
"pipe": pipeline(model="LazarusNLP/NusaBERT-base-NERP", auth_token=auth_token), | |
}, | |
} | |